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An administrator is provided with data collected by several practitioners. These data may include 
inconclusive observations. The administrator is required to form a frequency distribution on the 
states of nature that would be approved by external auditors as long as it is compatible with 
the available information. We state a novel result on the compatibility of a probability with 
a finite set of capacities. We use this result to provide necessary and sufficient conditions for 
the compatibility of the administrator’s frequency distribution with the data collected by the 
practitioners, according to two auditing criteria.

1. Introduction

Consider the problem confronting a health authority that must make a recommendation on the composition of viruses in the 
influenza vaccine. The recommendation is based on the health authority’s forecast regarding those viruses that are most likely 
to spread in the upcoming season. In an attempt to diagnose these viruses, health centers in different regions collect data on 
patients. Since vaccines are known to vary in their effectiveness across seasons1 the health authority wishes to be able to justify 
its recommendation. Naturally, the health authority is able to justify its recommendation if it is supported by the data collected by 
the health centers.

More generally, managers, both in the civil and in the private sectors, often must operate under conditions of uncertainty. 
Therefore, it is essential that they be able to prove that the probability underlying their decisions is based on all available information 
from all possible sources.

To study this problem, we consider an administrator who forms a probability over the possible states of nature. In addition, a 
group of practitioners collect relevant information on the matter under consideration and transfer their raw data to the administrator. 
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1 The seasonal influenza vaccine is designed to protect against the three or four influenza viruses that are most likely to spread and cause illness during the 

upcoming flu season. Twice a year, in February for the northern hemisphere vaccine and in September for the southern hemisphere vaccine, the World Health 
Organization provides recommendations on the composition of the influenza vaccine. More than 100 national influenza centers in over 100 countries conduct year-

round surveillance of influenza that involves receiving and testing thousands of influenza virus samples from patients and reporting their results to the World Health 
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Organization. See, for example, Osterholm et al. (2012) for an account of the effectiveness of these vaccines.
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If the probability formed by the administrator is supported by the information obtained from each of the practitioners, she should be 
able to establish that it is well-founded.

Suppose that the practitioners’ information is given in the form of raw data sets containing evidence about the states of nature 
that may have occurred. In some observations the state of nature that was realized may be known, while in others the outcome 
may be ambiguous. Cases in which a physician can perfectly diagnose a patient’s condition correspond to evidence of a single virus, 
whereas partially diagnosed cases indicate that an unknown virus, one out of several possibilities, is the cause. An observation is 
considered inconclusive if the practitioner cannot attribute it to a single state of nature, but only to a subset of states of nature, 
namely, events.

A raw data set induces a characteristic function that assigns to each event the frequency of observations for which this exact event 
is known to have occurred. For example, event {𝜔1, 𝜔2} is assigned a number corresponding to the patients with an inconclusive 
diagnosis – the practitioner is only able to narrow the set of possible viruses down to 𝜔1 and 𝜔2, but cannot determine which was 
actually present.

A processed data set induces a different characteristic function that assigns to each event the total number of observations for which 
a subset of states included in this event is known to have occurred. That is, event {𝜔1, 𝜔2} is assigned a number corresponding to the 
number of patients with either a conclusive diagnosis {𝜔1} or a conclusive diagnosis {𝜔2} or an inconclusive diagnosis {𝜔1, 𝜔2}.

A justification of the administrator for her chosen probability distribution will depend on the type of auditor she needs to convince. 
The first type of auditor bases its approval on the raw data set while the second type bases its approval on the processed data set. 
Any frequency that does not belong to the core of the corresponding (raw or processed data sets) cooperative game, must assign 
to some collection of states a frequency which is too low given the information included in the data set. That is, this frequency is 
not a possible realization in view of the available data. However, a frequency in the core is a possible realization of the distribution 
of outcomes that is consistent with these data. If the data set (raw or processed) includes no inconclusive evidence, there will be a 
single frequency in the core. If the data set (raw or processed) contains inconclusive evidence, then, there will be several frequencies 
in the core, each of which resolves the ambiguity differently.

When there are multiple practitioners, the administrator is able to argue that her probability is well-founded if the associated 
frequency can be decomposed into frequencies in the cores of the corresponding data set-based cooperative games. Verifying whether 
the administrator’s probability meets this requirement is relatively simple when the induced cooperative games are all convex as 
in the case of the processed data set auditors (see Lemma 1). Proposition 2 provides a necessary and sufficient condition for the 
existence of such a decomposition of the administrator’s probability for the raw data set auditors. This condition can be interpreted 
as testing the consistency of the administrator’s frequency against every weighted combination of events of the raw data.

The processed data set auditors can be viewed as more sophisticated than the raw data set auditors, approving only those 
frequency distributions that are consistent with every aspect of the available data. A comparison between the characterization of 
probability distributions compatible with processed and raw data sets reveals a fundamental distinction in the functions assigned to 
their corresponding auditors. Processed data set auditors bear the setup cost of processing the data and subsequently can determine 
whether the administrator’s frequency distribution should be accepted by verifying a finite set of conditions. In contrast, raw data 
set auditors do not incur any setup costs, but their scope is limited to rejecting a proposed frequency distribution. This limitation 
arises from the fact that verifying the compatibility of the probability distribution with the raw data set requires an infinite number 
of examinations. Since raw data set auditors can only perform a finite number of checks they are restricted to rejecting proposed 
frequency distributions, much like statistical tests that can only refute the null hypothesis, but cannot accept it. In Appendix B

we show that when a property termed Uniform Optimal Decomposition across Practitioners is fulfilled, the number of required 
examinations becomes finite and, therefore, raw data set auditors can accept probability distributions.

Jaffray (1991), Gonzales and Jaffray (1998) and Arad and Gayer (2012) have already pointed out that imprecise statistical data 
generate ambiguity that is incorporated in beliefs. In our setting, a practitioner’s characteristic function, after applying the appro-

priate transformation, becomes a special case of non-additive probabilities, also known as capacities. Capacities allow individuals to 
express the perceived ambiguity in the problem at hand.2 Lehrer (2009) introduced the concept of the concave integral as a method 
in which ambiguity-averse individuals can evaluate alternatives in conditions of uncertainty based on hard facts only (the events that 
are known to have occurred). Here, in order to justify her probability, the administrator needs to establish that it is supported by the 
non-additive probabilities of the practitioners insofar as it is a weighted average of probabilities in the cores of their capacities.

Our general result (Proposition 1) states that given a set of capacities on the same set of states of nature (each with a non-empty 
core), a prior probability can be represented as a weighted average of probabilities in the cores of these capacities if and only 
if for any positive random variable 𝑌 , the weighted average of the expected value of 𝑌 according to the concave integral across 
capacities is bounded from above by the expected value of 𝑌 with respect to the prior probability. The weights, which are fixed, 
can represent the experience, quality, political power, or influence incorporated into the capacities. Proposition 2, which has already 
been mentioned above, is a special case wherein practitioners’ information is given in the form of data sets and the weights are 
proportional to the number of observations in the practitioners’ data sets.

This method of aggregating probabilities using a weighted average is known in statistics as the linear opinion pool (Stone (1961)). 
The literature on decision-making under conditions of uncertainty provides an axiomatic foundation for the linear opinion pool. 
Gajdos and Vergnaud (2013), Crès et al. (2011) and Basili and Chateauneuf (2020) characterize the preference of a decision-maker 
who consults with experts to form a belief over an uncertain environment. The experts’ beliefs are assumed to be non-additive 
78

2 See Schmeidler (1989) for a characterization of a decision maker with non-additive beliefs.
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(represented by capacities or sets of probabilities), reflecting their perception of ambiguity in the problem under consideration. 
The proposed decision rules give rise to a belief that is a weighted average of experts’ beliefs (which may contain either multiple 
probabilities as in Gajdos and Vergnaud (2013) and Crès et al. (2011) or a single probability as in Basili and Chateauneuf (2020)). 
While this literature aims at convincing decision makers to adopt beliefs that are weighted average of the practitioners’ beliefs, we 
are interested in decision makers that formed their beliefs independently and provide a test that examines whether their beliefs 
satisfy this property.

Dempster and Shafer’s theory of evidence (Dempster (1967, 1968), Shafer (1976)) is an alternative approach to the linear opinion 
rule for merging beliefs derived from different sources of evidence, known as Dempster’s rule of combination. However, for the 
rule to yield meaningful results, it is essential that the evidence from separate sources does not exhibit significant contradictions.3

Consequently, Dempster’s rule appears to be more suitable for situations where evidence is collected for specific problems that 
naturally do not involve conflicting information,4 in contrast to statistical data. This distinction sets it apart from our framework, 
which deals with data sets comprising distinct records that have the potential to contradict one another.

In Section 2 we present the setting for the data sets and the auditors and prepare the ground for our main result. In Section 3 we 
introduce the necessary and sufficient condition for the aggregation of capacities evaluated according to the concave integral (Propo-

sition 1). In Section 4 we use Proposition 1 to provide necessary and sufficient conditions for the compatibility of the administrator’s 
frequency distribution with the data collected by the practitioners, according to two auditing criteria. We discuss the characteristics 
of each approach and suggest a compromise. Section 5 concludes. All proofs are relegated to the appendix.

2. Aggregating data sets

2.1. A single data set

Let Ω =
{
𝜔1, ...,𝜔𝑛

}
be a finite set of states of nature (𝑛 ⩾ 2). A data set is a sequence of 𝑇 observations, indexed by 𝑖 ∈

{1, ..., 𝑇 }, denoted by 𝐷 = (𝐵1, ..., 𝐵𝑇 ) where 𝐵𝑖 ∈ 2Ω∖ {∅,Ω}.5 The event 𝐵𝑖 represents the set of all states that may have occurred 
in observation 𝑖. Event 𝐵𝑖 is a singleton when it is clear which state of nature occurred in observation 𝑖. However, observations are 
assigned to non-singleton events when it is not clear which specific state of nature within that event has occurred. Following the 
example of health centers, in certain cases it may be known that a patient was infected with a type C virus (ruling out other types), 
but it is unknown which sub-type infected the patient.

A characteristic function is 𝑣 ∶ 2Ω →ℝ such that 𝑣(∅) = 0.6 We denote the cooperative game induced by the characteristic function 
𝑣 by 𝐺 = (Ω, 𝑣).

We assume that data sets are cross-sectional (i.e. the order of observations does not affect the inference) and therefore we can 
describe the raw data set with 𝑇 observations in a characteristic function form. Let 𝑉 ∶ 2Ω → ℕ be a function such that (i) For every 
event 𝐵 ⊂Ω, 𝑉 (𝐵) is the number of occurrences of 𝐵 in raw data set 𝐷 and (ii) 𝑉 (Ω) = 𝑇 . A raw data set in a characteristic function 
form is the cooperative game 𝐺𝑉 = (Ω; 𝑉 ).

Processing the raw data yields a function 𝑈 ∶ 2Ω → ℕ such that (i) For every event 𝐵 ⊂ Ω, 𝑈 (𝐵) =
∑
𝑏⊆𝐵 𝑉 (𝑏) is the number of 

occurrences of 𝐵 and its subsets (𝑏 ⊆ 𝐵) in raw data set 𝐷 and (ii) 𝑈 (Ω) = 𝑇 . A processed data set in a characteristic function form is 
the cooperative game 𝐺𝑈 = (Ω; 𝑈 ).

The mass function in Dempster and Shafer’s theory of evidence (Dempster (1967, 1968), Shafer (1976)), also known as a basic 
probability assignment, is closely related to our raw data set. It represents the degree of belief or support for each hypothesis based 
on the observed evidence. Our processed data set which is derived from processing the raw data set, is associated with Dempster and 
Shafer’s belief function.7

2.2. The administrator

Allowing for inconclusive evidence introduces ambiguity into the decision problem faced by the administrator. Choosing the 
composition of viruses in the influenza vaccine requires an exact assessment of the frequencies of the various types of viruses in the 
population. The administrator resolves the ambiguity generated by the inconclusive evidence by forming a frequency distribution of 
the 𝑇 observations, that is, a vector 𝑋 ∈ℝ𝑛+ where 𝑋𝑖 is the frequency of 𝜔𝑖 such that 

∑𝑛

𝑖=1𝑋𝑖 = 𝑇 .8 The goal of the administrator 
is to get the approval of the auditors to the use of this vector of frequencies.

3 In fact, in the extreme case of complete conflict, Dempster’s rule is not applicable at all.
4 To illustrate, Shafer’s leading example throughout his book (Shafer, 1976) revolves around Sherlock Holmes gathering various pieces of evidence related to a 

single crime.
5 Excluding 𝐵 =∅ implies that an event that is known to have occurred cannot be empty. Excluding 𝐵 =Ω implies that we ignore cases that add no information.
6 When it is more convenient, we slightly abuse notation by treating 𝑣 as a vector of length 2𝑛 .
7 Technically, the raw data values need to be normalized such that their sum equals 1 to qualify as a valid mass function. Furthermore, for the processed data to be 

regarded as a belief function, the mass assigned to the entire state space in the raw data set must be zero.
8 We assume that the administrator has a single additive probability distribution. However, we could easily extend the model so that her belief is represented 

by a capacity with a non-empty core. In this case it seems natural to apply the consistency condition imposed by the auditors to each probability in the core of 
the administrator’s capacity. Yet, we would have had to determine whether or not this capacity is justifiable if only a subset of the probabilities in the core of the 
79

administrator’s belief satisfy this condition. We prefer to avoid this issue by restricting the administrator’s beliefs to be additive.
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2.3. The auditors

We distinguish between two types of auditors. The first type of auditors verifies that, for every event 𝐵, the sum of frequencies 
assigned by the administrator to the states included in 𝐵 is greater than or equal to the number of occurrences of the exact event 𝐵, 
namely, that for every non empty 𝐵 ⊂Ω, 

∑
𝑖∈𝐵 𝑋𝑖 ≥ 𝑉 (𝐵). That is, these auditors approve 𝑋 if and only if 𝑋 ∈ 𝐶(𝐺𝑉 ) where 𝐶(𝐺)

denotes the core of the cooperative game 𝐺 = (Ω; 𝑉 ). We refer to these auditors as raw data set auditors.

The second type of auditors verifies that, for every event 𝐵, the sum of frequencies assigned by the administrator to the states 
included in 𝐵 is greater than or equal to the total number of occurrences of events that are subsets of 𝐵. These auditors, which we 
refer to as processed data set auditors, check that for every non empty 𝐵 ⊂ Ω, 

∑
𝑖∈𝐵 𝑋𝑖 ≥ 𝑈 (𝐵). That is, these auditors approve 𝑋 if 

and only if 𝑋 ∈ 𝐶(𝐺𝑈 ).9
It is straightforward to show that every frequency distribution that satisfies the processed data set auditors’ conditions, also 

satisfies the raw data set auditors’ conditions, but not vice versa. Consequently, the raw data set auditors can be viewed as less 
sophisticated than the processed data set auditors.

Lemma 1. Let 𝑉 be a raw data set in a characteristic function form and let 𝑈 be the corresponding processed data set in a characteristic 
function form.10

1. 𝐺𝑈 is a convex cooperative game.11

2. 𝐶(𝐺𝑈 ) is non-empty.

3. 𝐶(𝐺𝑈 ) ⊆ 𝐶(𝐺𝑉 ).

2.4. Multiple data sets

2.4.1. Notation

Let V = {𝑉1, 𝑉2, … , 𝑉𝑚} be a collection of characteristic functions on Ω. An 𝑚-multi-Game 𝐺̄ is the pair 𝐺̄ = (Ω; V ). We denote 
the single cooperative game that is defined by the 𝑗𝑡ℎ characteristic function of multi-Game 𝐺̄ by 𝐺̄𝑗 = (Ω; 𝑉𝑗 ).

Let 𝑋 ∈ℝ𝑛+, such that 
∑𝑛

𝑖=1𝑋𝑖 =
∑𝑚

𝑗=1 𝑉𝑗 (Ω). 𝑋 belongs to the core of multi-Game 𝐺̄ (𝑋 ∈ 𝐶(𝐺̄)) if there are 𝑚 finite non-negative 
vectors 𝑋1, ..., 𝑋𝑚 such that ∀𝑗 ∶𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 ) and 

∑𝑚

𝑗=1𝑋
𝑗 =𝑋.

2.4.2. Raw data sets
Let D = {𝐷1, 𝐷2, … , 𝐷𝑚} be a collection of 𝑚 data sets with 𝑇 =

∑𝑚

𝑖=1 𝑇𝑖 observations. Denote by V = {𝑉1, 𝑉2, … , 𝑉𝑚} the 
collection of raw data sets in a characteristic function form where 𝑉𝑖 corresponds to data set 𝐷𝑖. Let 𝐺̄V = (Ω; V ) be the raw data 
multi-game.

The administrator wishes to establish that the frequency underlying her decisions is credible. Let 𝑋 ∈ ℝ𝑛+, such that 
∑𝑛

𝑖=1𝑋𝑖 =∑𝑚

𝑗=1 𝑉𝑗 (Ω), be the administrator’s aggregated frequency distribution (i.e. non-normalized probability, a charge).

We refer to 𝐶(𝐺̄V ) as the raw data core of D . Every element 𝑋 ∈ 𝐶(𝐺̄V ), allows the administrator to prove to the raw data set 
auditors that her probability, the relative frequencies of 𝑋, is well-founded as it is supported by the information of the practitioners.

We define the processed data multi-game 𝐺̄U = (Ω; U ) where U = {𝑈1, 𝑈2, … , 𝑈𝑚} and 𝑈𝑖 is the processed data set in a charac-

teristic function form that corresponds to data set 𝐷𝑖. We refer to 𝐶(𝐺̄U ) as the processed data core of D . Every element 𝑋 ∈ 𝐶(𝐺̄U ), 
allows the administrator to prove to the processed data set auditors that her probability is well-founded.

2.4.3. Main result

Our main result, formally stated in Section 4, provides a necessary and sufficient condition for the decomposition of an aggre-

gated frequency distribution on 𝑇 =
∑𝑚

𝑖=1 𝑇𝑖 observations into 𝑚 frequency distributions such that the first is compatible with the 
requirements of a raw data set auditor regarding the first data set, the second is compatible with his requirements regarding the 
second data set and so on. In order to state the result we first provide a general result on information aggregation under ambiguity 
and then we apply it to our setting.

3. Aggregating concave integrals

3.1. Concave integrals

3.1.1. Definitions

Capacities are functions 𝑣 ∶ 2Ω →ℝ+ that satisfy (i) no empty events (𝑣(∅) = 0) (ii) finiteness (𝑣(Ω) is finite) and (iii) monotonicity 
(𝑆 ⊆ 𝑇 ⇒ 𝑣(𝑆) ≤ 𝑣(𝑇 )). Concave integrals are integrals over capacities that are used to evaluate acts in settings with non-additive 

9 For simplicity, we abstract from the fact that the realized outcomes must be natural numbers.
10 The lemma’s proof of claims 1 and 2 hinges on the definitions of the raw and processed data sets. An alternative approach is to show that 𝑈 is a belief function, 

which is known to induce a convex game whose core is non-empty.
80

11 A cooperative game 𝐺 = (Ω, 𝑣) is convex if 𝑣(𝑆) + 𝑣(𝑇 ) ≤ 𝑣(𝑆 ∪ 𝑇 ) + 𝑣(𝑆 ∩ 𝑇 ) for every two events 𝑆 and 𝑇 .
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beliefs. Concave integrals were introduced by Lehrer (2009) (and later generalized in Even and Lehrer (2014)) to allow for aversion 
to ambiguity even when capacities are not convex.12

The concave integral of a finite non-negative random variable 𝑌 over the capacity 𝑣 is given by ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣 = min𝑓∈𝐹𝑣{𝑓 (𝑌 )}
where 𝐹𝑣 is the set of all concave and homogeneous functions of degree one 𝑓 ∶ℝ𝑛+ → ℝ such that ∀𝐵 ∈ 2Ω ∶ 𝑓 (𝜒𝐵) ≥ 𝑣(𝐵) where 
𝜒𝐵 ∈ {0, 1}𝑛 denotes the indicator vector of 𝐵 (𝜒𝐵

𝑖
= 1 if 𝜔𝑖 ∈𝐵 and 𝜒𝐵

𝑖
= 0 otherwise).1314

A decomposition of vector 𝑌 is 𝛼𝑌 ∶ 2Ω →ℝ+ such that 
∑
𝐵∈2Ω 𝛼𝑌 (𝐵)𝜒𝐵 = 𝑌 . Denote the set of all decompositions of 𝑌 by 𝐷(𝑌 )

and the optimal decomposition of 𝑌 relative to capacity 𝑣 by 𝛼⋆
𝑌 ,𝑣

= argmax𝛼𝑌 ∈𝐷(𝑌 )
{∑

𝐵∈2Ω 𝛼𝑌 (𝐵)𝑣(𝐵)
}

.15 Lemma 1(i) in Lehrer 

(2009) states that ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣 = ∑
𝐵∈2Ω 𝛼

⋆
𝑌 ,𝑣

(𝐵)𝑣(𝐵), namely, the concave integral can be expressed as a linear combination of the 
capacities of events where the weights are the corresponding optimal decomposition elements. The following remark on the concave 
integrals of indicator vectors will become useful.

Remark 1. Let Ω =
{
𝜔1, ...,𝜔𝑛

}
be a finite set of states of nature, let 𝑣 be a capacity on Ω.

1. Let 𝑌 ∈𝑅𝑛+. If 𝛼⋆
𝑌 ,𝑣

(𝐵) > 0 then 𝑣(𝐵) = ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣.
2. Let 𝐺 = (Ω; 𝑣) be the cooperative game induced by capacity 𝑣.

(a) 𝑣(Ω) ≤ ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣.
(b) 𝐶(𝐺) is non-empty if and only if 𝑣(Ω) = ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣.
(c) 𝐶(𝐺) is empty if and only if 𝑣(Ω) < ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣.

3.2. Multiple concave integrals

3.2.1. Novel result

We now extend the framework to allow for several capacities. Let V = {𝑣1, … , 𝑣𝑚} be a set of 𝑚 capacities on Ω and denote 
𝑉 (Ω) =

∑𝑚

𝑗=1 𝑣𝑗 (Ω). Let 𝑋 ∈ ℝ𝑛+, such that 
∑𝑛

𝑖=1𝑋𝑖 =
∑𝑚

𝑗=1 𝑣𝑗 (Ω), be a non-normalized probability for the set V . A non additive 
probability (or normalized capacity) is a monotonic capacity for which the value of Ω equals 1. To convert capacities into non additive 
probabilities, let the practitioners’ normalized capacities (their non-additive beliefs) be 𝑣̂𝑗 =

𝑣𝑗

𝑣𝑗 (Ω)
and V̂ = {𝑣̂1, … , 𝑣̂𝑚}. In addition, 

denote 𝑋̂ = 1
𝑉 (Ω)𝑋 and 𝑋̂𝑗 = 1

𝑣𝑗 (Ω)
𝑋𝑗 , so that 𝑋̂ becomes a probability on Ω. Finally, denote 𝛽𝑗 =

𝑣𝑗 (Ω)
𝑉 (Ω) so that 𝑋̂ =

∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 .

Proposition 1 is a novel result that characterizes the core of the multi-game induced by V . It shows that the probability of the 
decision maker is a 𝛽-weighted average of probabilities in the respective cores of the individuals’ non-additive beliefs if and only if 
the evaluation of any positive random variable 𝑌 according to the probability (𝑋̂𝑇 ⋅ 𝑌 ) is higher than or equal to the 𝛽-weighted 
average of the evaluations based on the individual capacities (∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣̂𝑗 ).

Proposition 1. Let 𝑋̂ ∈ ℝ𝑛+ be a probability on Ω. There exist 𝑚 vectors 𝑋̂𝑗 ∈ 𝐶( ̂̄𝐺𝑗 ) such that 𝑋̂ =
∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 if and only if for every 

random variable 𝑌 ∈𝑅𝑛+: 
𝑚∑
𝑗=1
𝛽𝑗

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣̂𝑗 ≤ 𝑋̂𝑇 ⋅ 𝑌 .

To sketch the proof, recall that if 𝑋 is in the core of the multi-game induced by V , it is a sum of members in the cores of each 
game in V . We first show, for each capacity 𝑣𝑗 ∈ V , that the expectation of any 𝑌 ∈𝑅𝑛+ according to a vector in the core of that game 
is greater than or equal to its expectation according to the respective concave integral. Then summing over all capacities implies that 
the expectation of 𝑌 according to 𝑋 must be greater than or equal to the sum of the concave integrals of 𝑌 over all 𝑣𝑗 ∈ V .

If 𝑋 is not in the core of the multi-game induced by V we can construct a violation to the condition on the sum of concave 
integrals. Either the core of the multi-game induced by V is non-empty, in which case, we use a hyperplane separation theorem to 
construct a violating example or the core of the multi-game induced by V is empty and then Remark 1.2c implies that 𝜒Ω violates 
the condition.

The final step of the proof is to convert the condition into terms of probabilities and non-additive capacities.

12 In the Choquet expected utility model (Schmeidler (1989)) aversion to ambiguity corresponds to convex capacities for which the concave integral and the Choquet 
integral imply the same preferences over random variables (Lehrer (2009)).
13 Note that this definition does not require 𝑣 to be monotonic. Since the raw data sets in our framework may induce non-monotonic characteristic functions, we 

prove that the concave integral can also operate on non-monotonic capacities.
14 We abuse notation by using 𝜒 to denote both the set of indicator vectors and the indicator matrix where the columns are the 2𝑛 indicator vectors. Also, all vectors 

are defined to be column vectors. Row vectors are denoted by the superscript ‘T’.
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15 To show the non-emptiness of 𝐷(𝑌 ) consider 𝛼 such that ∀𝑖 ∈ {1,… , 𝑛} ∶ 𝛼({𝜔𝑖}) = 𝑌𝑖 and for every non-singleton 𝐵 ∈ 2Ω , 𝛼(𝐵) = 0. 𝛼 ∈𝐷(𝑌 ) for every 𝑌 .
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3.2.2. Remarks

Even and Lehrer (2014) show that the expectation of 𝑌 according to the concave integral is (weakly) higher than the expectation 
calculated according to the Choquet integral. Hence, if the individuals were to use the Choquet integral to evaluate random variables 
instead of the concave integral, showing that the evaluation of 𝑌 using the probability is higher than the weighted average of the 
evaluations based on the non-additive beliefs, would be insufficient to prove that the probability is supported by the individuals’ 
non-additive beliefs.

In addition, note that it is possible to extend the decision maker’s probability to contain multiple priors by applying the condition 
in Proposition 1 to each of them separately (see the discussion in Footnote 8).

Finally, a technically useful implication of the proof of Proposition 1 is that it provides an upper bound on the sum of concave 

integrals in case the core of the multi-game is non-empty. That is, for every random variable 𝑌 ∈𝑅𝑛+: 
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤ min
𝑋∈𝐶(𝐺̄)

𝑋𝑇 ⋅ 𝑌 .

4. Back to aggregating data sets

4.1. Main result: raw data compatibility

Now we can present our main result on the aggregation of data sets.

Proposition 2. Let 𝑋 ∈ℝ𝑛+ be an aggregated frequency distribution on 𝑇 =
∑𝑚

𝑖=1 𝑇𝑖 observations for the set of 𝑚 data sets D . 𝑋 ∈ 𝐶(𝐺̄V )
if and only if every random variable 𝑌 ∈𝑅𝑛+ satisfies 

∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 ≤ 𝑌 ⋅𝑋.

Proposition 2 is almost a direct application of the novel Proposition 1.16 The main difference is that Proposition 1 requires V
to be a set of capacities while in Proposition 2 V is a set of raw data sets which may not be monotonic. In the proof we show that 
replacing the raw data sets by their monotonic covers generates capacities with the same cores but whose concave integrals are 
well-defined.

4.2. Usefulness of Proposition 2

To demonstrate how Proposition 2 can be utilized to determine whether a frequency distribution is compatible with the available 
raw data sets, consider the following example with two practitioners and three states of nature. Practitioner 1’s data set contains 
3 observations that are all inconclusive, each one containing a pair of states - the first observation includes States 1 and 2, the 
second observation includes States 1 and 3, and the third observation includes States 2 and 3. Practitioner 2’s data set contains two 
observations: the first observation is conclusive, containing only State 1, while the second observation is inconclusive including States 
2 and 3. Formally, 𝑣1({1}) = 𝑣1({2}) = 𝑣1({3}) = 0, 𝑣1({1, 2}) = 𝑣1({1, 3}) = 𝑣1({2, 3}) = 1, 𝑣1({1, 2, 3}) = 3, 𝑣2({1}) = 1, 𝑣2({2}) =
𝑣2({3}) = 0, 𝑣2({1, 2}) = 𝑣2({1, 3}) = 0, 𝑣2({2, 3}) = 1, and 𝑣2({1, 2, 3}) = 2. An administrator’s frequency distribution that assigns one 
observation to State 1 and four observations to State 3 (𝑋 = (1, 0, 4)) can be falsified with the help of Proposition 2. To see this, 
consider the random variable 𝑌 = (1, 1, 0), then ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣1 = 1 ∗ 𝑣1(1,2) = 1, and ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣2 = 1 ∗ 𝑣2({1}) + 1 ∗ 𝑣2({2}) = 1, however 
𝑌 ∗𝑋 = 1. Thus, by Proposition 2, the administrator’s frequency distribution is found to be incompatible with the data sets according 
to the raw data set auditors (and therefore also according to the processed data auditors).

Proposition 2 necessitates conducting an infinite number of examinations (one for each random variable 𝑌 ) to ascertain the com-

patibility of the probability distribution with the raw data set. Consequently, raw data set auditors who are constrained to executing 
only a finite number of checks are limited to rejecting proposed frequency distributions, as demonstrated in the example above. In 
Appendix B we study a special class of V that satisfies a property termed Uniform Optimal Decomposition across Practitioners, which 
requires only a finite number of examinations to determine the compatibility of the probability distribution with the raw data set. In 
this case raw data set auditors can accept a proposed probability distribution.

4.3. Processed data compatibility

Proposition 2 presents a condition that if satisfied, a raw data set auditor would accept the suggested frequency distribution 
as compatible with the available raw data sets. One can apply an adequate version of Proposition 2 to U to understand whether 
a frequency distribution would be found acceptable by the processed data set auditors as well. In fact, since inclusion in the pro-

cessed data core implies inclusion in the raw data core (by Lemma 1), the condition stated in Proposition 2 is a necessary (though 
insufficient) condition for an aggregate frequency to belong to 𝐶(𝐺̄U ). Alternatively, recall that Lemma 1 states that the coopera-

tive game induced by a processed data set is convex. By Dragan et al. (1989) (see also Footnote 18 in Gayer and Persitz (2016)), 
𝐶(𝐺̄U ) = 𝐶(

∑
𝑈𝑖∈U 𝐺𝑈𝑖 ), and therefore, compatibility with processed data set auditors can be established simply by verifying that 

the frequency distribution is in the core of the summation game, 
∑
𝑈𝑖∈U 𝐺𝑈𝑖 .
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16 A slight modification of this result was used to prove Proposition 3 in Gayer and Persitz (2016) (see p. 948).
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4.4. Raw data set auditors vs. processed data set auditors

If there are no inconclusive observations the auditing criteria of the raw and the processed data set auditors coincide. Therefore, 
the difference between these two types lies within the permissible resolution of inconclusive evidence. To demonstrate, consider 
a raw data set of 3 observations on 3 states of nature where 𝑉 ({1}) = 1, 𝑉 ({2}) = 1, 𝑉 ({3}) = 0, 𝑉 ({1, 2}) = 1, 𝑉 ({1, 3}) = 0 and 
𝑉 ({2, 3}) = 0. Raw data set auditors would approve the frequency distribution 𝑋 = (1, 1, 1) since 𝑉 ({1, 2}) <𝑋1 +𝑋2. However, the 
total frequency attributed to States 1 and 2 understates the total number of observations assigned to the relevant events - {1}, {2} and 
{1, 2} - since 𝑉 ({1}) +𝑉 ({2}) +𝑉 ({1, 2}) >𝑋1 +𝑋2. Therefore, 𝑋 = (1, 1, 1) would be disapproved by the processed data set auditors. 
For the same reason, the processed data set auditors would claim that the frequency attributed to State 3 is erroneously overstated 
since no observation is assigned to an event that includes State 3. On the other hand, the frequency distribution 𝑌 = (1.5, 1.5, 0) would 
be approved by the processed data set auditors (and therefore also by the raw data set auditors). Here the inconclusive observation 
of the event {1, 2} is equally attributed to States 1 and 2, but not to State 3.

4.5. Advanced raw data set auditors

One partial, yet relatively simple, remedy to the overly simplified nature of the raw data set auditors is to add to the condition 
in Proposition 2 the requirement that no state of nature is assigned a number larger than the total number of observations that were 
attributed to events that contain it, namely, ∀𝜔𝑖 ∈Ω ∶𝑋𝑖 ≤∑

𝑆⊂Ω∖{𝜔𝑖} 𝑉 (𝑆 ∪ {𝜔𝑖}). It is easy to see that this additional requirement 
rules out 𝑋 = (1, 1, 1) as a compatible frequency distribution in the above-mentioned example.

Clearly, every frequency distribution approved by these advanced raw data set auditors is approved also by the standard raw data 
set auditors. In addition, every frequency distribution approved by the processed data set auditors is approved by these advanced 
raw data set auditors.17 Therefore, the set of frequency distributions that the advanced raw data set auditors find compatible falls 
between that of the standard raw data set auditors and the processed data set auditors.18

5. Concluding remarks

We provide a necessary and sufficient condition for the compatibility of a probability distribution with a set of given non-additive 
beliefs. The condition is that for any positive random variable 𝑌 , a given weighted average of the expected value of 𝑌 according to 
the concave integrals across capacities is bounded from above by the expected value of 𝑌 with respect to the prior probability.

This result is applied to a setting wherein an administrator is provided with data collected by several practitioners. These data may 
include inconclusive observations and therefore give rise to many possible frequency distributions. The administrator is required to 
form a frequency distribution on the states of nature that would be approved by external auditors. We consider two types of auditors, 
the first type relies on raw data in its inspection, whereas the second type relies on processed data. We provide necessary and 
sufficient conditions for the compatibility of the administrator frequency distribution with the data collected by the practitioners, 
according to both auditing criteria.

A comparison between the characterization of probability distributions compatible with processed and raw data sets reveals a 
fundamental distinction in the functions assigned to their corresponding auditors. Processed data set auditors bear the setup cost 
of processing the data and subsequently can determine whether the administrator’s frequency distribution should be accepted by 
verifying a finite set of conditions. In contrast, raw data set auditors do not incur any setup costs, but their scope is limited to 
rejecting a proposed frequency distribution. This limitation arises from the fact that verifying the compatibility of the probability 
distribution with the raw data set requires an infinite number of examinations (one for each random variable 𝑌 ). As a result, raw data 
set auditors can only perform a finite number of checks and are therefore restricted to rejecting proposed frequency distributions.

We conclude by proposing a third approach to audit the administrator’s frequency distribution. The approach taken by the 
advanced raw data set auditors can be viewed as a reasonable compromise between the costly approach of the processed data set 
auditors and the over permissiveness of the raw data set auditors.
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17 To see this, recall that every frequency distribution approved by a processed data set auditor is also approved by a standard raw data set auditor (Lemma 1). In 
addition, note that 𝑋 ∈ 𝐶(𝐺𝑈 ) implies that for every state 𝜔𝑖 : 

∑
𝜔𝑗∈Ω∖{𝜔𝑖}

𝑋𝑗 ≥𝑈 (Ω∖{𝜔𝑖}). Therefore, for every state 𝜔𝑖: 
∑
𝜔𝑗∈Ω∖{𝜔𝑖}

𝑋𝑗 ≥∑
𝑆⊆Ω∖{𝜔𝑖}

𝑉 (𝑆). This implies 
that for every state 𝜔𝑖 : 

∑
𝜔𝑗∈Ω

𝑋𝑗 −
∑
𝜔𝑗∈Ω∖{𝜔𝑖}

𝑋𝑗 ≤ 𝑉 (Ω) −∑
𝑆⊆Ω∖{𝜔𝑖}

𝑉 (𝑆). That is, for every state 𝜔𝑖 : 𝑋𝑖 ≤∑
𝑆⊂Ω∖{𝜔𝑖}

𝑉 (𝑆 ∪ {𝜔𝑖}) so the additional requirement is 
satisfied. This means that every frequency distribution approved by a processed data set auditor is also approved by an advanced raw data set auditor.
18 This set, however, need not coincide with the standard raw data set auditors’ or with the processed data set auditors’ set of compatible frequency distributions. 

For example, suppose that there are four states of nature and four observations that correspond to 𝑣({1}) = 1, 𝑣({4}) = 1, 𝑣({1, 2}) = 1 and 𝑣({3, 4}) = 1 while all other 
events were not observed. The frequency distribution (3, 0, 0, 1) is only compatible according to the standard raw data set auditors, whereas the frequency distribution 
(2, 1, 0, 1) is compatible also according to the more advanced raw data set auditors, but not by the processed data set auditors. Finally, the frequency distribution 
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(1, 1, 1, 1) is compatible according to all three types of auditors.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Proof. (i) 𝑈 (𝑆) is the number of observations in 𝐷 that are assigned to events that are subsets of 𝑆 , 𝑈 (𝑇 ) is the number of 
observations in 𝐷 that are assigned to events that are subsets of 𝑇 and 𝑈 (𝑆 ∩𝑇 ) is the number of observations in 𝐷 that are assigned 
to events that are subsets of both 𝑆 and 𝑇 . 𝑈 (𝑆 ∪ 𝑇 ) is the number of observations in 𝐷 that are assigned to events that are subsets 
of 𝑆 ∪ 𝑇 , meaning it is at least the number of observations in 𝐷 that are assigned to events that are either in 𝑆 or in 𝑇 excluding 
those in 𝑆 ∩ 𝑇 . Hence, 𝑈 (𝑆 ∪ 𝑇 ) ≥ 𝑈 (𝑆) +𝑈 (𝑇 ) −𝑈 (𝑆 ∩ 𝑇 ) and therefore 𝑈 (𝑆) + 𝑈 (𝑇 ) ≤ 𝑈 (𝑆 ∪ 𝑇 ) + 𝑈 (𝑆 ∩ 𝑇 ). That is, 𝐺𝑈 is a 
convex cooperative game.

(ii) 𝐶(𝐺𝑈 ) is non empty since the core of any convex cooperative game is non empty (see Shapley (1971/1972)).

(iii) Recall that ∀𝐵 ⊂Ω ∶ 𝑈 (𝐵) =
∑
𝑏⊆𝐵 𝑉 (𝑏) and 𝑈 (Ω) = 𝑉 (Ω). Let 𝑋 ∈ 𝐶(𝐺𝑈 ) (𝐶(𝐺𝑈 ) is non empty) then 

∑𝑛

𝑖=1𝑋𝑖 = 𝑈 (Ω) =
𝑉 (Ω) and 

∑
𝜔𝑖∈𝐵 𝑋𝑖 ≥𝑈 (𝐵) =

∑
𝑏⊆𝐵 𝑉 (𝑏) ≥ 𝑉 (𝐵). Thus, 𝑋 ∈ 𝐶(𝐺𝑉 ). Hence, 𝐶(𝐺𝑈 ) ⊆ 𝐶(𝐺𝑉 ) and 𝐶(𝐺𝑉 ) is non empty. □

A.2. Proof of Remark 1

Proof. First, note that 𝑣(𝐵) ≤ ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣 since the decomposition where 𝛼𝜒𝐵,𝑣(𝑏) = 0 for every 𝑏 ⊂ 𝐵 and 𝛼𝜒𝐵,𝑣(𝐵) = 1 generates a 
value of 𝑣(𝐵) and there might be decompositions of 𝜒𝐵 that generate higher values.

Next, suppose 𝑣(𝐵) < ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣. Then, (i) 𝛼⋆
𝜒𝐵,𝑣

(𝐵) < 1 and (ii)

𝑣(𝐵) <
∑
𝑏⊂𝐵

𝛼⋆
𝜒𝐵,𝑣

(𝑏)𝑣(𝑏) + 𝛼⋆
𝜒𝐵,𝑣

(𝐵)𝑣(𝐵)

Hence,

𝑣(𝐵) < 1
1 − 𝛼⋆

𝜒𝐵,𝑣
(𝐵)

∑
𝑏⊂𝐵

𝛼⋆
𝜒𝐵,𝑣

(𝑏)𝑣(𝑏)

If 𝛼⋆
𝜒𝐵,𝑣

(𝐵) > 0 then the decomposition where 𝛼⋆⋆
𝜒𝐵,𝑣

(𝑏) =
𝛼⋆
𝜒𝐵,𝑣

(𝑏)

1−𝛼⋆
𝜒𝐵,𝑣

(𝐵) for all 𝑏 ⊂ 𝐵 and 𝛼⋆⋆
𝜒𝐵,𝑣

(𝐵) = 0 achieves a strictly higher value 

than 𝛼⋆
𝜒𝐵,𝑣

, in contradiction to its optimality.

Hence, 𝑣(𝐵) < ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣 implies 𝛼⋆
𝜒𝐵,𝑣

(𝐵) = 0.

Now, suppose that 𝑌 ∈𝑅𝑛+. By definition,

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 =
∑
𝑏⊄𝐵

𝛼⋆
𝑌 ,𝑣

(𝑏)𝑣(𝑏) +
∑
𝑏⊂𝐵

𝛼⋆
𝑌 ,𝑣

(𝑏)𝑣(𝑏) + 𝛼⋆
𝑌 ,𝑣

(𝐵)𝑣(𝐵)

If 𝑣(𝐵) < ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣 then∑
𝑏⊄𝐵

𝛼⋆
𝑌 ,𝑣

(𝑏)𝑣(𝑏) +
∑
𝑏⊂𝐵

𝛼⋆
𝑌 ,𝑣

(𝑏)𝑣(𝑏) + 𝛼⋆
𝑌 ,𝑣

(𝐵)𝑣(𝐵) ≤ ∑
𝑏⊄𝐵

𝛼⋆
𝑌 ,𝑣

(𝑏)𝑣(𝑏) +
∑
𝑏⊂𝐵

(𝛼⋆
𝑌 ,𝑣

(𝑏) + 𝛼⋆
𝑌 ,𝑣

(𝐵)𝛼⋆⋆
𝜒𝐵,𝑣

(𝑏))𝑣(𝑏)

Since 𝛼⋆
𝑌 ,𝑣

is optimal, the two expressions must be equal. That is, 𝛼⋆
𝑌 ,𝑣

(𝐵) = 0. Hence, 𝑣(𝐵) < ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣 implies 𝛼⋆
𝑌 ,𝑣

(𝐵) = 0. Therefore 
𝛼⋆
𝑌 ,𝑣

(𝐵) > 0 implies 𝑣(𝐵) = ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣.
The second part of the remark is almost trivial. The first assertion is a specific case of the first step of this proof. That is, since 

𝑣(𝐵) ≤ ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑣 then, in particular, 𝑣(Ω) ≤ ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣. Next, since 𝐷(𝜒Ω) is the set of all balancing weights, by the Shapley-

Bondareva Theorem (Bondareva (1963) and Shapley (1967)) we get that 𝐶(𝐺) is non-empty if and only if 𝑣(Ω) = ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣, while 
𝐶(𝐺) is empty if and only if 𝑣(Ω) < ∫ 𝑐𝑎𝑣 𝜒Ω𝑑𝑣. □

A.3. Lemma 2

Lemma 2. Let Ω =
{
𝜔1, ...,𝜔𝑛

}
be a finite set of states of nature. Let 𝑣 be a capacity on Ω and let 𝑌 be a finite non-negative random 

variable on Ω. Denote 𝐻̂ = {ℎ ∈ℝ𝑛+|∀𝐵 ∈ 2Ω ∶
∑
𝜔𝑖∈𝐵 ℎ𝑖 ≥ 𝑣(𝐵)} and the set of its extreme points by 𝐻 .19 Then,
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19 ℎ ∈ 𝐻̂ is an extreme point of 𝐻̂ if there are no ℎ̃, ̃̃ℎ ∈ 𝐻̂ and 𝜆 ∈ (0,1) such that ℎ = 𝜆ℎ̃+ (1 − 𝜆) ̃̃ℎ.
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𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 = min
ℎ∈𝐻

ℎ𝑇 ⋅ 𝑌 .

Proof. By the definitions of concave integral and optimal decomposition,

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 = max
𝛼∶2𝑛→ℝ+

{ ∑
𝐵∈2𝑛

𝛼(𝐵)𝑣(𝐵)
||||
∑
𝐵∈2Ω

𝛼(𝐵)𝜒𝐵 = 𝑌 ,∀𝐵 ∈ 2Ω ∶𝛼(𝐵) ≥ 0
}

Since 𝑣 and 𝑌 are finite and since 𝐷(𝑌 ) is non-empty, there is a solution to the maximization problem. Therefore, by the general 
strong duality theorem, the dual has the same solution. Hence,

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 = min
ℎ∈ℝ𝑛+

{
ℎ𝑇 ⋅ 𝑌 |∀𝐵 ∈ 2Ω ∶

∑
𝜔𝑖∈𝐵

ℎ𝑖 ≥ 𝑣(𝐵)
}

= min
ℎ∈𝐻̂

ℎ𝑇 ⋅ 𝑌

𝐻̂ is non empty20 and convex.21 Since ℎ𝑇 ⋅ 𝑌 is a linear function of ℎ and since 𝐻̂ is convex, the minimum of ℎ𝑇 ⋅ 𝑌 is achieved on 

the extreme points of 𝐻̂ . Thus, 
𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 = min
ℎ∈𝐻

ℎ𝑇 ⋅ 𝑌 . □

A.4. Lemma 3

Lemma 3. Let Ω =
{
𝜔1, ...,𝜔𝑛

}
be a finite set of states of nature. Let 𝑣 be a capacity on Ω. If 𝐶(𝑣) is non empty there is a neighborhood 𝑈

of 1𝑛 (a length 𝑛 vector of ones) such that every non-negative random variable 𝑌 ∈𝑈 on Ω satisfies

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣 = min
𝑐∈𝐶(𝑣)

𝑐𝑇 ⋅ 𝑌 .

Proof. First note that 𝐶(𝑣) = {ℎ ∈ 𝐻̂| ∑𝜔𝑖∈Ω ℎ𝑖 = 𝑣(Ω)} ≠ ∅. Therefore, min𝑐∈𝐶(𝑣) 𝑐𝑇 ⋅ 𝑌 ≥minℎ∈𝐻̂ ℎ
𝑇 ⋅ 𝑌 . Moreover, by the proof of 

Lemma 2, min𝑐∈𝐶(𝑣) 𝑐𝑇 ⋅ 𝑌 ≥minℎ∈𝐻 ℎ𝑇 ⋅ 𝑌 = ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣.
Suppose, to the contrary, that there is a sequence 𝑌𝑡 that converges to 1𝑛 and each element satisfies min𝑐∈𝐶(𝑣) 𝑐𝑇 ⋅ 𝑌𝑡 > ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣.
Since by Lemma 2, for every 𝑡, minℎ∈𝐻 ℎ𝑇 ⋅ 𝑌𝑡 = ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣 it must be that for every 𝑡, ℎ𝑡 ∈𝐻∖𝐶(𝑣) where ℎ𝑡 = argminℎ∈𝐻 ℎ𝑇 ⋅ 𝑌𝑡. 

In particular, since ℎ𝑡 ∈𝐻∖𝐶(𝑣) then ℎ𝑡𝑇 ⋅ 1𝑛 > 𝑣(Ω).
Let us consider the sequence ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣. Since (i) 𝐻 is finite (ii) The elements of 𝐻 are finite (iii) 𝑌𝑡 is a sequence of finite elements 

and (iv) ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣 =minℎ∈𝐻 ℎ𝑇 ⋅ 𝑌𝑡, the sequence ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣 is bounded.

Thus, ∫ 𝑐𝑎𝑣 𝑌𝑡𝑑𝑣 has a convergent subsequence ∫ 𝑐𝑎𝑣 𝑌𝑠𝑑𝑣. The limit of this subsequence is lim𝑠→∞ ∫ 𝑐𝑎𝑣 𝑌𝑠𝑑𝑣 = ∫ 𝑐𝑎𝑣 lim𝑠→∞ 𝑌𝑠𝑑𝑣 =∫ 𝑐𝑎𝑣 1𝑛𝑑𝑣 = 𝑣(Ω), the last equality is due to 𝐶(𝑣) being non empty and Remark 1.2b.

Since ∫ 𝑐𝑎𝑣 𝑌𝑠𝑑𝑣 converges, every of its subsequences is also convergent, and to the same limit. Since 𝐻 is finite, at least one 
such subsequence is ∫ 𝑐𝑎𝑣 𝑌𝑟𝑑𝑣 such that 𝑌𝑟 converges to 1𝑛 and all its elements correspond to the same ℎ𝑟. For this subsequence 
lim𝑟→∞ ∫ 𝑐𝑎𝑣 𝑌𝑟𝑑𝑣 = lim𝑟→∞ ℎ

𝑟𝑇 ⋅ 𝑌𝑟 = ℎ𝑟𝑇 ⋅ {lim𝑟→∞ 𝑌𝑟} = ℎ𝑟𝑇 ⋅ 1𝑛. Hence, ℎ𝑟𝑇 ⋅ 1𝑛 = 𝑣(Ω). Contradiction.

Hence, there is a neighborhood 𝑈 of 1𝑛 such that every non-negative random variable 𝑌 ∈ 𝑈 satisfies ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣 = min𝑐∈𝐶(𝑣) 𝑐𝑇 ⋅
𝑌 . □

A.5. Lemma 4

Lemma 4. Let 𝐺̄ be an 𝑚-Multi-Game, 𝐺̄ = (Ω; V ). Then, 𝐶(𝐺̄) is a closed and convex set.

Proof. For every 𝑣𝑗 ∈ V , 𝐶(𝐺̄𝑗 ) is compact since (i) A set of vectors that satisfies a set of weak linear inequalities is closed (recall 
that the empty set is closed) and (ii) A set of non-negative vectors that satisfy efficiency is bounded (recall that the capacities are 
non-negative). Since 𝐶(𝐺̄) is the sum of compact individual cores, it is also compact. Thus, 𝐶(𝐺̄) is a closed set.

To show that 𝐶(𝐺̄) is a convex set, let 𝑍, 𝑍̂ ∈ 𝐶(𝐺̄). First, for every 𝜆 ∈ [0, 1] we get that 𝜆𝑍 + (1 − 𝜆)𝑍̂ is a non normalized 
probability vector for the set V since

𝑛∑
𝑖=1

(𝜆𝑍 + (1 − 𝜆)𝑍̂)𝑖 =
𝑛∑
𝑖=1
𝜆𝑍𝑖 + (1 − 𝜆)𝑍̂𝑖 = 𝜆

𝑛∑
𝑖=1
𝑍𝑖 + (1 − 𝜆)

𝑛∑
𝑖=1
𝑍̂𝑖

20 For example, by the monotonicity of capacities, (𝑣(Ω), … , 𝑣(Ω))′ ∈ 𝐻̂ .
21 ℎ, ̄ℎ ∈ 𝐻̂ implies that ∀𝐵 ∈ 2Ω , (𝜒𝐵 )𝑇 ℎ ≥ 𝑣(𝐵) and (𝜒𝐵 )𝑇 ℎ̄ ≥ 𝑣(𝐵) and therefore for every 𝜆 ∈ [0, 1]:

(𝜒𝐵 )𝑇 (𝜆ℎ+ (1 − 𝜆)ℎ̄) = 𝜆(𝜒𝐵 )𝑇 ℎ+ (1 − 𝜆)(𝜒𝐵 )𝑇 ℎ̄ ≥ 𝜆𝑣(𝐵) + (1 − 𝜆)𝑣(𝐵) = 𝑣(𝐵)
85
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= 𝜆
𝑚∑
𝑗=1
𝑣𝑗 (Ω) + (1 − 𝜆)

𝑚∑
𝑗=1
𝑣𝑗 (Ω) =

𝑚∑
𝑗=1
𝑣𝑗 (Ω)

In addition, since 𝑍, 𝑍̂ ∈ 𝐶(𝐺̄) there exist 2𝑚 vectors 𝑍1, ..., 𝑍𝑚 and 𝑍̂1, ..., 𝑍̂𝑚 such that ∀𝑗: 𝑍𝑗 ∈ 𝐶(𝐺̄𝑗 ), 𝑍̂𝑗 ∈ 𝐶(𝐺̄𝑗 ) and 
∑𝑚

𝑗=1𝑍
𝑗 =

𝑍 and 
∑𝑚

𝑗=1 𝑍̂
𝑗 = 𝑍̂ . By the convexity of the core of a single game ∀𝜆 ∈ [0, 1], ∀𝑗: 𝜆𝑍𝑗 + (1 − 𝜆)𝑍̂𝑗 ∈ 𝐶(𝐺̄𝑗 ). These vectors sum to 

𝜆𝑍 + (1 − 𝜆)𝑍̂ since,

𝑚∑
𝑗=1

[𝜆𝑍𝑗 + (1 − 𝜆)𝑍̂𝑗 ] = 𝜆
𝑚∑
𝑗=1
𝑍𝑗 + (1 − 𝜆)

𝑚∑
𝑗=1
𝑍̂𝑗 = 𝜆𝑍 + (1 − 𝜆)𝑍̂

Hence, 𝜆𝑍 + (1 − 𝜆)𝑍̂ ∈ 𝐶(𝐺̄). Thus, 𝐶(𝐺̄) is a convex set. □

A.6. Proof of Proposition 1

Proof. First suppose that 𝑋 ∈ 𝐶(𝐺̄). Then, 𝑋 is a non normalized probability vector on Ω for the set V and there are 𝑚 finite 
non-negative random variables 𝑋1, ..., 𝑋𝑚 on Ω such that ∀𝑣𝑗 ∈ V ∶𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 ) and 

∑𝑚

𝑗=1𝑋
𝑗 =𝑋.

Recall that for every 𝑌 ∈ 𝑅𝑛+, 𝐷(𝑌 ) denotes the non-empty set of all decompositions. For every random variable 𝑌 ∈ 𝑅𝑛+, for 
every decomposition 𝛼𝑌 ∈𝐷(𝑌 ) and for every capacity 𝑣𝑗 ∈ V we get

𝑋𝑗
𝑇
⋅ 𝑌 =𝑋𝑗𝑇 ⋅

[ ∑
𝐵∈2Ω

[
𝛼𝑌 (𝐵) × 𝜒𝐵

]]
=

∑
𝐵∈2Ω

[
𝑋𝑗

𝑇
⋅
[
𝛼𝑌 (𝐵) × 𝜒𝐵

]]
=

∑
𝐵∈2Ω

[
𝛼𝑌 (𝐵) ×

[
𝑋𝑗

𝑇
⋅ 𝜒𝐵

]]
=

∑
𝐵∈2Ω

[
𝛼𝑌 (𝐵) ×

∑
𝜔𝑖∈𝐵

𝑋
𝑗

𝑖

]
≥ ∑
𝐵∈2Ω

[
𝛼𝑌 (𝐵) × 𝑣𝑗 (𝐵)

]

Where the first equality is by the definition of a decomposition and the final inequality is true since ∀𝑣𝑗 ∈ V ∶𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 ) implies 
that ∀𝑣𝑗 ∈ V , ∀𝐵 ∈ 2Ω ∶

∑
𝜔𝑖∈𝐵 𝑋

𝑗

𝑖
≥ 𝑣𝑗 (𝐵).

In particular, for every random variable 𝑌 ∈ 𝑅𝑛+ and for every capacity 𝑣𝑗 ∈ V , 𝑋𝑗𝑇 ⋅ 𝑌 ≥∑
𝐵∈2Ω

[
𝛼⋆
𝑌 ,𝑣𝑗

(𝐵) × 𝑣𝑗 (𝐵)
]
. Hence, by 

Lemma 1(i) in Lehrer (2009), for every random variable 𝑌 ∈𝑅𝑛+ and for every capacity 𝑣𝑗 ∈ V , 𝑋𝑗𝑇 ⋅ 𝑌 ≥ ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣𝑗 . Summing over 

all capacities, for every random variable 𝑌 ∈𝑅𝑛+ we get 𝑋𝑇 ⋅ 𝑌 =
𝑚∑
𝑗=1
𝑋𝑗

𝑇
⋅ 𝑌 =

𝑚∑
𝑗=1

[
𝑋𝑗

𝑇
⋅ 𝑌

] ≥ 𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 . Thus, 𝑋 ∈ 𝐶(𝐺̄) implies 

that for every random variable 𝑌 ∈𝑅𝑛+, 𝑋𝑇 ⋅ 𝑌 ≥∑𝑚

𝑗=1 ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣𝑗 .
Next suppose 𝑋 ∉ 𝐶(𝐺̄). Let us first attend to the case where 𝐶(𝐺̄) is non-empty.

Since 𝐶(𝐺̄) is closed and convex (by Lemma 4) and since a singleton is closed and convex, the separating hyperplane theorem 
guarantees that there is a vector 𝑍 = (𝑍1, ..., 𝑍𝑛) ≠ 0𝑛 that separates 𝑋 and 𝐶(𝐺̄). That is, there exists 𝑍 ≠ 0𝑛 such that for every 
𝑤 ∈ 𝐶(𝐺̄), 𝑋𝑇 ⋅𝑍 <𝑤𝑇 ⋅𝑍 . Thus, there exists 𝑍 ≠ 0𝑛 such that 𝑋𝑇 ⋅𝑍 <min𝑤∈𝐶(𝐺̄){𝑤𝑇 ⋅𝑍}.

For a positive constant 𝑐 denote by 𝑍𝑐 the vector that has 𝑍𝑐
𝑖
= 𝑍𝑖+𝑐

𝑐
as a representative element. 𝑋 and every member of 𝐶(𝐺̄)

are non normalized probability vectors on Ω for the set V . Therefore, for every 𝑤 ∈ 𝐶(𝐺̄), 
∑𝑛

𝑖=1𝑋𝑖 =
∑𝑛

𝑖=1𝑤𝑖 =
∑𝑚

𝑗=1 𝑣𝑗 (Ω). Hence,

𝑋𝑇 ⋅𝑍𝑐 = 1
𝑐
× (𝑋𝑇 ⋅𝑍) + (𝑋𝑇 ⋅ 1𝑛) =

1
𝑐
× (𝑋𝑇 ⋅𝑍) + (𝑤𝑇 ⋅ 1𝑛) <

1
𝑐
× min
𝑤∈𝐶(𝐺̄)

{𝑤𝑇 ⋅𝑍} + (𝑤𝑇 ⋅ 1𝑛) =

min
𝑤∈𝐶(𝐺̄)

{ 1
𝑐
× (𝑤𝑇 ⋅𝑍)} + (𝑤𝑇 ⋅ 1𝑛) = min

𝑤∈𝐶(𝐺̄)
{ 1
𝑐
× (𝑤𝑇 ⋅𝑍) + (𝑤𝑇 ⋅ 1𝑛)} = min

𝑤∈𝐶(𝐺̄)
{𝑤𝑇 ⋅𝑍𝑐}

Thus, for every positive constant 𝑐 and for every 𝑤 ∈ 𝐶(𝐺̄) we get 𝑋𝑇 ⋅𝑍𝑐 <min𝑤∈𝐶(𝐺̄){𝑤𝑇 ⋅𝑍𝑐}.

Denote 𝑤⋆ = argmin𝑤∈𝐶(𝐺̄){𝑤𝑇 ⋅ 𝑍𝑐}. Since 𝑤⋆ ∈ 𝐶(𝐺̄) there exist 𝑤1⋆, ..., 𝑤𝑚⋆ such that ∀𝑣𝑗 ∈ V ∶ 𝑤𝑗⋆ ∈ 𝐶(𝐺̄𝑗 ) and ∑𝑚

𝑗=1𝑤
𝑗⋆ = 𝑤⋆. Moreover, ∀𝑣𝑗 ∈ V ∶ 𝑤𝑗⋆ ∈ argmin𝑤𝑗∈𝐶(𝐺̄𝑗 ){𝑤

𝑗𝑇 ⋅ 𝑍𝑐}.22 Therefore, for every positive constant 𝑐, 𝑋𝑇 ⋅ 𝑍𝑐 <∑𝑚

𝑗=1 min𝑤𝑗∈𝐶(𝐺̄𝑗 ){𝑤
𝑗𝑇 ⋅𝑍𝑐}.

For every capacity 𝑣𝑗 ∈ V , let 𝑈𝑗 be the neighborhood of 1𝑛 that satisfies Lemma 3. That is, ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣𝑗 = min𝑐𝑗∈𝐶(𝐺̄𝑗 ){𝑐
𝑗𝑇 ⋅ 𝑌 }

for every non negative random variable 𝑌 ∈ 𝑈𝑗 . Let 𝑈 = ∩𝑗𝑈𝑗 . Therefore, ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣𝑗 = min𝑐𝑗∈𝐶(𝐺̄𝑗 ){𝑐
𝑗𝑇 ⋅ 𝑌 } for every 𝑣𝑗 ∈ V and 

22 To see that, suppose that ∃𝑣𝑗 ∈ V such that 𝑤𝑗⋆ ∈ 𝐶(𝐺̄𝑗 ) but 𝑤𝑗⋆ ∉ argmin𝑤𝑗∈𝐶(𝐺̄𝑗 ){𝑤
𝑗𝑇 ⋅𝑍𝑐} while 𝑤𝑗⋆⋆ ∈ argmin𝑤𝑗∈𝐶(𝐺̄𝑗 ){𝑤

𝑗𝑇 ⋅𝑍𝑐}. Then,

𝑤1⋆𝑇 ⋅𝑍𝑐 +⋯+𝑤𝑗⋆⋆𝑇 ⋅𝑍𝑐 +⋯+𝑤𝑚⋆𝑇 ⋅𝑍𝑐 < 𝑤1⋆𝑇 ⋅𝑍𝑐 +⋯+𝑤𝑗⋆𝑇 ⋅𝑍𝑐 +⋯+𝑤𝑚⋆𝑇 ⋅𝑍𝑐

Denote 𝑤̄ = 𝑤1⋆ + ⋯ + 𝑤𝑗⋆⋆ + ⋯ + 𝑤𝑚⋆ . Then 𝑤̄ ∈ 𝐶(𝐺̄) and 𝑤̄𝑇 ⋅ 𝑍𝑐 < 𝑤⋆
𝑇 ⋅ 𝑍𝑐 in contradiction to 𝑤⋆ = argmin𝑤∈𝐶(𝐺̄){𝑤 ⋅ 𝑍𝑐}. Hence, ∀𝑣𝑗 ∈ V ∶ 𝑤𝑗⋆ ∈
86
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every non negative random variable 𝑌 ∈ 𝑈 . As a consequence, for every non negative random variable 𝑌 ∈ 𝑈 , 
∑𝑚

𝑗=1 ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑣𝑗 =∑𝑚

𝑗=1 min𝑐𝑗∈𝐶(𝐺̄𝑗 ){𝑐
𝑗𝑇 ⋅ 𝑌 }.

Note that (i) 𝑍𝑐 goes to 1𝑛 when 𝑐 goes to infinity; (ii) 𝑍𝑐 is non-negative for large enough 𝑐 and (iii) the 𝑤𝑗 s are the minimizers 
of min𝑐𝑗∈𝐶(𝐺̄𝑗 ){𝑐

𝑗𝑇 ⋅𝑍𝑐}. Let 𝑐 be large enough so that 𝑍𝑐 ∈𝑈 ∩ℝ𝑛+. Hence, by Lemma 3:

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑍𝑐𝑑𝑣𝑗 =
𝑚∑
𝑗=1

min
𝑤𝑗∈𝐶(𝐺̄𝑗 )

{𝑤𝑗𝑇 ⋅𝑍𝑐} >𝑋𝑇 ⋅𝑍𝑐

Thus, if 𝐶(𝐺̄) is non-empty, 𝑋 ∉ 𝐶(𝐺̄) implies that there exists 𝑌 ∈ ℝ𝑛+ that does not satisfy 
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤ 𝑋𝑇 ⋅ 𝑌 . That is, if 

𝐶(𝐺̄) is non-empty and every 𝑌 ∈ℝ𝑛+ satisfies 
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤𝑋𝑇 ⋅ 𝑌 then 𝑋 ∈ 𝐶(𝐺̄).

Finally, we attend to the case where 𝑋 ∉ 𝐶(𝐺̄) and 𝐶(𝐺̄) is empty. Consider 𝑌 = 1𝑛. Thus, 𝑋𝑇 ⋅ 𝑌 = 𝑋𝑇 ⋅ 1𝑛 =
∑𝑛

𝑖=1𝑋𝑖 =∑𝑚

𝑗=1 𝑣𝑗 (Ω), where the final equality is true since 𝑋 is non normalized probability vector on Ω for the set V .

By definition, 𝐶(𝐺̄) is empty if and only if ∃𝑣𝑗 ∈ V ∶ 𝐶(𝐺̄𝑗 ) = ∅. Then, by Remark 1.2c, 𝑣𝑗 (Ω) < ∫ 𝑐𝑎𝑣 1𝑛𝑑𝑣𝑗 . Moreover, by 
Remark 1.2a, 𝑣𝑘(Ω) ≤ ∫ 𝑐𝑎𝑣 1𝑛𝑑𝑣𝑘 for all 𝑣𝑘 ∈ V ∖{𝑣𝑗}. Therefore,

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 =
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 1𝑛𝑑𝑣𝑗 >
𝑚∑
𝑗=1
𝑣𝑗 (Ω) =𝑋𝑇 ⋅ 𝑌

Thus, if 𝐶(𝐺̄) is empty, for every non normalized probability vector on Ω for the set V , 𝑋 ∈ ℝ𝑛+, there exists 𝑌 ∈ ℝ𝑛+ such that 
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 > 𝑋
𝑇 ⋅𝑌 . That is, if every 𝑌 ∈ℝ𝑛+ satisfies 

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤𝑋𝑇 ⋅𝑌 then 𝑋 ∈ 𝐶(𝐺̄). That is, there exist 𝑚 vectors 𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 )

such that 𝑋 =
∑𝑚

𝑗=1𝑋
𝑗 if and only if every 𝑌 ∈ℝ𝑛+ satisfies 

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤𝑋𝑇 ⋅ 𝑌 .

The final step of the proof is to normalize the capacities and 𝑋. First note that 𝑋̂ = 𝑋

𝑉 (Ω) =
1

𝑉 (Ω)
∑𝑚

𝑗=1𝑋
𝑗 =

∑𝑚

𝑗=1
1

𝑉 (Ω)𝑋
𝑗 =∑𝑚

𝑗=1
𝑣𝑗 (Ω)
𝑉 (Ω)

𝑋𝑗

𝑣𝑗 (Ω)
=
∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 . Thus, since 𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 ) if and only if 𝑋̂𝑗 ∈ 𝐶( ̂̄𝐺𝑗 ), we conclude that 𝑋 ∈ 𝐶(𝐺̄) if and only if there exist 

𝑚 vectors 𝑋̂𝑗 ∈ 𝐶( ̂̄𝐺𝑗 ) such that 𝑋̂ =
∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 .

Finally, 
𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤ 𝑋𝑇 ⋅ 𝑌 if and only if 1
𝑉 (Ω)

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤ 1
𝑉 (Ω)

𝑋𝑇 ⋅ 𝑌 . Since 
𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 =
∑
𝐵∈2Ω

𝛼⋆
𝑌 ,𝑣

(𝐵)𝑣(𝐵) and 

since 𝛼⋆
𝑌 ,𝑣

(𝐵) = 𝛼⋆
𝑌 ,𝑣̂

(𝐵), we get that 1
𝑉 (Ω)

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 =
1

𝑉 (Ω)

𝑚∑
𝑗=1
𝑣𝑗 (Ω)

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣̂𝑗 =
𝑚∑
𝑗=1
𝛽𝑗

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣̂𝑗 . In addition, 1
𝑉 (Ω)

𝑋𝑇 ⋅ 𝑌 =

1
𝑉 (Ω)

𝑚∑
𝑗=1

(𝑋𝑗 )𝑇 ⋅ 𝑌 = 1
𝑉 (Ω)

𝑚∑
𝑗=1
𝑣𝑗 (Ω)(𝑋̂𝑗 )𝑇 ⋅ 𝑌 =

𝑚∑
𝑗=1
𝛽𝑗 (𝑋̂𝑗 )𝑇 ⋅ 𝑌 = 𝑋̂𝑇 ⋅ 𝑌 where the last equality uses 𝑋̂ =

∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 .

Therefore, we showed that there exist 𝑚 vectors 𝑋̂𝑗 ∈ 𝐶( ̂̄𝐺𝑗 ) such that 𝑋̂ =
∑𝑚

𝑗=1 𝛽𝑗𝑋̂
𝑗 if and only if for every random variable 

𝑌 ∈𝑅𝑛+: 
𝑚∑
𝑗=1
𝛽𝑗

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣̂𝑗 ≤ 𝑋̂𝑇 ⋅ 𝑌 . □

A.7. Lemma 5 [see also the discussion in Even and Lehrer (2014)]

Lemma 5. Let 𝑉 be a raw data set in a characteristic function form and let 𝐺 be the cooperative game induced by 𝑉 . Let 𝑉 be the monotonic 
cover23 of 𝑉 and let 𝐺̃ be the cooperative game induced by 𝑉 . Then, (i) 𝑉 is a capacity, (ii) 𝐶(𝐺) = 𝐶(𝐺̃), (iii) Let 𝑌 ∈ ℝ𝑛+ be a finite 
non-negative random variable on Ω. Then, ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 = ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 .

Proof. By the definition of 𝑉 , we have 𝑉 (∅) = 0 and therefore also 𝑉 (∅) = 0. Since 𝑉 (Ω) = max{𝑉 (𝑅)|𝑅 ⊆ Ω} and 𝑉 (Ω) is the 
number of observations we get that 𝑉 (Ω) = 𝑉 (Ω), that is 𝑉 (Ω) is finite. Finally, by definition, a monotonic cover is monotonic. Thus, 
𝑉 is a capacity.
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23 The monotonic cover of 𝐺 = (Ω, 𝑉 ) is 𝐺̃ = (Ω, 𝑉 ) such that ∀𝐵 ⊆Ω ∶ 𝑉 (𝐵) =max𝑅⊆𝐵 𝑉 (𝑅).
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Before we prove the second part, note that a raw data set in a characteristic function form induces both a non-negative cooperative 
game and a non-negative monotonic cover. Therefore, the elements of 𝐶(𝐺) and 𝐶(𝐺̃) must be non-negative.

First, since 𝑉 (Ω) = 𝑉 (Ω), 
∑
𝑖∈{1,…,𝑛} 𝑥𝑖 = 𝑉 (Ω) if and only if 

∑
𝑖∈{1,…,𝑛} 𝑥𝑖 = 𝑉 (Ω).

Next, if 𝑥 ∈ 𝐶(𝐺̃) then ∀𝐵 ⊂Ω ∶
∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥ 𝑉 (𝐵). That is, if 𝑥 ∈ 𝐶(𝐺̃) then ∀𝐵 ⊂Ω ∶

∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥max{𝑉 (𝑅)|𝑅⊆𝐵}. In particu-

lar, if 𝑥 ∈ 𝐶(𝐺̃) then ∀𝐵 ⊂Ω ∶
∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥ 𝑉 (𝐵). Thus, if 𝑥 ∈ 𝐶(𝐺̃) then 𝑥 ∈ 𝐶(𝐺).

For the other direction, suppose 𝑥 ∈ 𝐶(𝐺). Fix 𝐵 and let 𝑅 ⊂ 𝐵. Since 𝑥 ∈ 𝐶(𝐺) then 
∑
𝜔𝑖∈𝑅 𝑥𝑖 ≥ 𝑉 (𝑅). Since 𝑥 is non-negative, ∑

𝜔𝑖∈𝐵 𝑥𝑖 ≥
∑
𝜔𝑖∈𝑅 𝑥𝑖. Therefore, 

∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥ 𝑉 (𝑅). As a result, if 𝑥 ∈ 𝐶(𝐺) then ∀𝐵 ⊂Ω, ∀𝑅⊆𝐵 ∶

∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥ 𝑉 (𝑅). Thus, ∀𝐵 ⊂Ω ∶∑

𝜔𝑖∈𝐵 𝑥𝑖 ≥max{𝑉 (𝑅)|𝑅⊆𝐵}. Hence, ∀𝐵 ⊂Ω ∶
∑
𝜔𝑖∈𝐵 𝑥𝑖 ≥ 𝑉 (𝐵). That is, if 𝑥 ∈ 𝐶(𝐺) then 𝑥 ∈ 𝐶(𝐺̃).

It is left to be shown that for every finite non-negative random variable, 𝑌 ∈ ℝ𝑛+, the concave integral is the same whether it is 
calculated directly over 𝑉 or over its monotonic cover (∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 = ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 ).

First, note that, by definition, for every 𝐵 ∈ 2Ω we have 𝑉 (𝐵) ≥ 𝑉 (𝐵).24 Let 𝛼𝑌 ∈ 𝐷(𝑌 ). Then, 
∑
𝐵∈2Ω 𝛼𝑌 (𝐵)𝑉 (𝐵) ≥∑

𝐵∈2Ω 𝛼𝑌 (𝐵)𝑉 (𝐵). Denote the optimal decomposition of 𝑌 relative to 𝑉 by 𝛼⋆
𝑌

and the optimal decomposition of 𝑌 relative to 
𝑉 by 𝛼̃⋆

𝑌
. Thus,

∑
𝐵∈2Ω

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝐵) ≥ ∑

𝐵∈2Ω
𝛼⋆
𝑌
(𝐵)𝑉 (𝐵) ≥ ∑

𝐵∈2Ω
𝛼⋆
𝑌
(𝐵)𝑉 (𝐵)

Hence, ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 ≤ ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 .

Finally, for every 𝐵 ⊆Ω denote by 𝑆(𝐵) = argmax𝑅⊆𝐵 𝑉 (𝑅) the subset of 𝐵 that determines 𝑉 (𝐵).25 That is, 𝑆(𝐵) ⊆ 𝐵. Let 
𝛽 ∶ 2Ω →ℝ+ be the following system of weights,

𝛽(𝑅) =
∑

{𝐵∈2Ω|𝑆(𝐵)=𝑅}
𝛼̃⋆
𝑌
(𝐵) +

∑
{𝐵∈2Ω|𝑆(𝐵)=𝐵∖𝑅}

𝛼̃⋆
𝑌
(𝐵)

The vector of weights induced by 𝛽 is denoted by 𝑊 𝛽 .

𝑊
𝛽

𝑖
=

∑
{𝑅∈2Ω|𝜔𝑖∈𝑅}

𝛽(𝑅) =
∑

{𝑅∈2Ω|𝜔𝑖∈𝑅}
∑

{𝐵∈2Ω|𝑆(𝐵)=𝑅}
𝛼̃⋆
𝑌
(𝐵) +

∑
{𝑅∈2Ω|𝜔𝑖∈𝑅}

∑
{𝐵∈2Ω|𝑆(𝐵)=𝐵∖𝑅}

𝛼̃⋆
𝑌
(𝐵)

The first term on the right-hand side is the sum of weights over all the events that include state 𝜔𝑖 and were determined by an event 
that includes state 𝜔𝑖. The second term on the right-hand side is the sum of weights over all the events that include state 𝜔𝑖 and were 
determined by an event that does not include state 𝜔𝑖. Hence, this can also be written as

𝑊
𝛽

𝑖
=

∑
{𝐵∈2Ω|𝜔𝑖∈𝑆(𝐵)}

𝛼̃⋆
𝑌
(𝐵) +

∑
{𝐵∈2Ω|𝜔𝑖∈𝐵∖𝑆(𝐵)}

𝛼̃⋆
𝑌
(𝐵) =

∑
{𝐵∈2Ω|𝜔𝑖∈𝐵}

𝛼̃⋆
𝑌
(𝐵) = 𝑌𝑖

Thus, 𝛽 is a decomposition of 𝑌 .

Note that,

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑉 =
∑
𝐵∈2Ω

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝐵) =

∑
𝑅∈2Ω

∑
{𝐵∈2Ω|𝑆(𝐵)=𝑅}

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝐵) =

∑
𝑅∈2Ω

∑
{𝐵∈2Ω|𝑆(𝐵)=𝑅}

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝑅)

The second equality is true since every event 𝐵 has a corresponding event 𝑆(𝐵) that determines it and the third is due to the 
definitions of monotonic cover and 𝑆(𝐵). Thus,

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑉 ≥ ∑
𝑅∈2Ω

𝛽(𝑅)𝑉 (𝑅) =
∑
𝑅∈2Ω

∑
{𝐵∈2Ω|𝑆(𝐵)=𝑅}

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝑅) +

∑
𝑅∈2Ω

∑
{𝐵∈2Ω|𝑆(𝐵)=𝐵∖𝑅}

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝑅)

=

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑉 +
∑
𝑅∈2Ω

∑
{𝐵∈2Ω|𝑆(𝐵)=𝐵∖𝑅}

𝛼̃⋆
𝑌
(𝐵)𝑉 (𝑅) ≥

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑉

The first inequality is due to 𝛽 being a decomposition of 𝑌 (but not necessarily the optimal one). The next equality is by the definition 
of 𝛽 while the following equality is due to the result above. The final inequality results from system of weights and data sets being 
non-negative. This completes the proof since ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 = ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 . □

24 This is close to the monotonicity with respect to capacities property stated in Section 11.1.2 of Lehrer (2009). It is not the same since 𝑉 may be non-monotonic.
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25 In cases where there is more than one maximizer, we assume, with no loss of generality, that 𝑆(𝐵) is the first in some given list of subsets.
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A.8. Proof of Proposition 2

Proof. The proof uses an intermediate result from the proof of Proposition 1 by which there exist 𝑚 vectors 𝑋𝑗 ∈ 𝐶(𝐺̄𝑗 ) such 

that 𝑋 =
∑𝑚

𝑗=1𝑋
𝑗 if and only if every 𝑌 ∈ ℝ𝑛+ satisfies 

𝑚∑
𝑗=1

𝑐𝑎𝑣

∫ 𝑌 𝑑𝑣𝑗 ≤ 𝑋𝑇 ⋅ 𝑌 . Since the monotonic covers of the raw data sets in 

a characteristic function form are capacities, by Proposition 1, 𝑋 ∈ 𝐶(𝐺̄Ṽ ) if and only if every random variable 𝑌 ∈ 𝑅𝑛+ satisfies ∑
𝑉𝑗∈Ṽ ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 ≤ 𝑌 ⋅ 𝑋. By Lemma 5, 𝑉 (Ω) = 𝑉 (Ω), 𝐶(𝐺) = 𝐶(𝐺̃) and for every 𝑌 ∈ ℝ𝑛+ ∶ ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 = ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉 . Therefore, 

𝑋 ∈ 𝐶(𝐺̄V ) if and only if every random variable 𝑌 ∈𝑅𝑛+ satisfies 
∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 ≤ 𝑌 ⋅𝑋. □

Appendix B. Uniform optimal decomposition across practitioners

We say that a set of raw data sets V satisfies the property of Uniform Optimal Decomposition across Practitioners if for every 
random variable 𝑌 ∈𝑅𝑛+, for every event 𝐵 ⊆Ω and for every pair of data sets 𝑣, 𝑣′ ∈ V : 𝛼⋆

𝑌 ,𝑣
(𝐵) = 𝛼⋆

𝑌 ,𝑣′
(𝐵).

Verifying whether a set of raw data sets satisfies Uniform Optimal Decomposition across Practitioners is not always straightfor-

ward. However, in certain cases, this property is known to hold. For example, Lovász (1983) demonstrates that if all raw data sets 
are convex, their optimal decompositions are identical.

The following proposition shows that if the set V satisfies Uniform Optimal Decomposition across Practitioners, then raw data 
set auditors need only verify the condition stated in Proposition 2 for 𝜒 , the set of indicator vectors (see Footnote 14), a finite subset 
of random variables 𝑌 , rather than for all random variables 𝑌 ∈𝑅𝑛+.

Proposition 3. Let 𝑋 ∈ ℝ𝑛+ be an aggregated frequency distribution on 𝑇 =
∑𝑚

𝑖=1 𝑇𝑖 observations for the set of 𝑚 data sets D . Suppose 
that V satisfies Uniform Optimal Decomposition across Practitioners. 𝑋 ∈ 𝐶(𝐺̄V ) if and only if every random variable 𝑌 ∈ 𝜒 satisfies ∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 ≤ 𝑌 ⋅𝑋

The proof of Proposition 3 depends on Proposition 2, which asserts that if 𝑋 ∉ 𝐶(𝐺̄V ), then there exists a random variable 𝑌 , 
whose sum of the optimal decompositions across the respective data sets violates the inequality stated in Proposition 2. In the current 
case, these optimal decompositions, which are identical for all data sets, due to Uniform Optimal Decomposition across Practitioners, 
can be expressed as the same weighted sums of indicator vectors for all data sets. It then follows that at least one of these indicator 
vectors, when examined in isolation, violates the inequality in Proposition 3.

Proof. One direction is trivial: If 𝑋 ∈ 𝐶(𝐺̄V ) then by Proposition 2, every random variable 𝑌 ∈ 𝜒 satisfies 
∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 ≤ 𝑌 ⋅𝑋.

For the other direction we assume that 𝑋 ∉ 𝐶(𝐺̄V ) and show that there exists 𝐵 ⊆Ω such that 
∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 > 𝜒𝐵 ⋅𝑋.

If 𝑋 ∉ 𝐶(𝐺̄V ) then by Proposition 2 there exists 𝑌 ∈ 𝑅𝑛+ such that 
∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝑌 𝑑𝑉𝑗 > 𝑌 ⋅ 𝑋. That is, there exists 𝑌 ∈ 𝑅𝑛+

such that 
∑
𝑉𝑗∈V

∑
𝐵∈2Ω 𝛼

⋆
𝑌 ,𝑉𝑗

(𝐵)𝑉𝑗 (𝐵) > 𝑌 ⋅ 𝑋. According to Remark 1.1, 𝑉𝑗(𝐵) = ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 for all 𝐵 ∈ 2Ω and for all 𝑉𝑗 ∈ V

for which 𝛼⋆
𝑌 ,𝑉

(𝐵) > 0. Consequently, 
∑
𝑉𝑗∈V

∑
𝐵∈2Ω 𝛼

⋆
𝑌 ,𝑉𝑗

(𝐵) ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 > 𝑌 ⋅𝑋. Since the raw data sets satisfy Uniform Optimal 
Decomposition across Practitioners we have 

∑
𝐵∈2Ω 𝛼

⋆
𝑌
(𝐵)

∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 > 𝑌 ⋅ 𝑋, and since 

∑
𝐵∈2Ω 𝛼

⋆
𝑌
(𝐵)𝜒𝐵 = 𝑌 we obtain ∑

𝐵∈2Ω 𝛼
⋆
𝑌
(𝐵)

∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 >∑

𝐵∈2Ω 𝛼
⋆
𝑌
(𝐵)𝜒𝐵 ⋅𝑋. For this inequality to hold true there must be a 𝐵 ⊆Ω such that 𝛼⋆

𝑌 ,𝑉
(𝐵) > 0

for which 
∑
𝑉𝑗∈V ∫ 𝑐𝑎𝑣 𝜒𝐵𝑑𝑉𝑗 > 𝜒𝐵 ⋅𝑋 which concludes the proof. □
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