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Social Clubs and Social Networks†

By Chaim Fershtman and Dotan Persitz*

We present a strategic network formation model based on member-
ship in clubs. Individuals choose affiliations. The set of all member-
ships induces a weighted network where two individuals are directly 
connected if they share a club. Two individuals may also be indirectly 
connected using multiple memberships of third parties. Individuals 
gain from their position in the induced network and pay member-
ship fees. We study the club congestion model where the weight of a 
link decreases with the size of the smallest shared club. A trade-off 
emerges between the size of clubs, the depreciation of indirect con-
nections, and the membership fee. (JEL D71, D85, Z13)

Most of the initial social interactions between individuals occur within social
circles, social groups, or social clubs.1 Clearly, some social connections can 

be formed randomly—like meeting someone on the street—but most friendships and 
acquaintances are formed within a social context like a family, school class, alumni 
organization, church, fraternity, academic department, research group, workplace, 
boy scout troop, youth extracurricular activity, gym, or even a bar that the individual 
regularly attends.2 That is, social links are typically formed within social contexts 
rather than between individuals who do not share any common social foci. Thus, 
when considering the formation of social networks, the social environment—partic-
ularly, the number and size of the different social clubs and the type of affiliations 
that people maintain within these clubs—also needs to be scrutinized.

Most sociologists view social clubs as preceding the formation of social 
networks,  as stated in Rivera, Soderstrom, and  Uzzi (2010, 6): “If networks are

1 Sociologists refer to social contexts as social foci. Feld (1981) introduces a “focus theory” where he defines
social foci as “social, psychological, legal, or physical entities around which joint activities are organized”  
(p. 1016). For the sociological literature, see Simmel (1955), Young and Larson (1965a, b), Kadushin (1966), Feld 
(1981), Granovetter (1983), and the survey on nongeographical proximity by Rivera, Soderstrom, and Uzzi (2010). 
See also the discussion on subneighborhoods in Jackson, Rodriguez-Barraquer, and Tan (2012).

2 In this paper, we abstract from the direct benefits of belonging to a club. Our focus is on the role of clubs as 
platforms for the formation of social contacts. The direct benefits from belonging to a club are the focus of the 
well-established literature on local public goods (also referred to as club theory), starting with Tiebout (1956) and
Buchanan (1965). Wooders (1978, 1980) was the first to introduce clubs into a general equilibrium framework to
lay the foundations for a rigorous discussion on Tiebout (1956) hypotheses.
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the fabric of inter-personal interaction, social foci are the looms in which they are 
woven.” In some social clubs, membership is indeed automatic (e.g., family), but 
in most cases, affiliation is by choice. People choose their gym, their university, 
and their place of worship, as well as other social clubs that they wish to belong to, 
taking into account their existing club affiliations and the structure of their social 
network.3

We present a model where individuals choose affiliations in social clubs. The 
membership fee is identical across all clubs. Two individuals who share a club are 
linked in the induced social network. Thus, membership in a social club provides 
the benefit of being directly connected to other individuals in the club. Multiple club 
affiliations facilitate indirect connections. So, for example, an individual may have 
direct connections to her high school classmates in addition to having an indirect 
connection to an individual that attends a reading club together with one of her high 
school classmates.

Interaction in a small club is different than that in a large club. The “quality” of 
connection between two individuals generated in a large club tends to be lower than 
that generated by a small club. In a small group, members are well acquainted and 
the flow of information is more reliable. Intuitively, the probability of any pair of 
members to interact and realize the potential benefit from their mutual affiliation 
decreases with the size of the club. To capture this congestion effect, we assign each 
direct link a weight that is a nonincreasing function of the size of the smallest club 
shared by the two individuals. The weight of an indirect connection is the product 
of the weights associated with the links along the path. We define the shortest path 
between two individuals as the connection with the highest quality between them. 
That is, the shortest path between two individuals is the one that yields the highest 
product of the weights of the direct connections along the path. The benefits to an 
individual are the sum of the weights of the shortest paths to all other individuals net 
of the total club membership fees.

A social environment is Open Clubwise Stable if no individual wants to leave 
or join a club and there is no subset of individuals that are better off by forming a 
new club.4 Open Clubwise Stability can be viewed as an extension of the pairwise 
stability solution concept posited by Jackson and  Wolinsky (1996) to the club 
formation setup. That is, the connections model is equivalent to a club formation 
model with the restriction that clubs consist of exactly two members.5

Since Granovetter (1973), the concept of “weak ties” has become central to 
the applied literature on social networks. There are two possible interpretations 
of “weak ties.” Two individuals may be connected directly via a large club that is 
subject to heavy congestion or through an interconnected sequence of small clubs. In 

3 For sociological work that advocates for the simultaneous evolution of social networks and social foci, see 
Feld (1981) and McPherson, Smith-Lovin, and Cook (2001). Snijders et al. (2006) and Chandrasekhar and Jackson 
(2018) introduce stochastic nonstrategic models of network formation that admit exogenously given clubs as plat-
forms for link formation.

4 While we highlight clubs as platforms on which links form, other works concentrate on the role of the coali-
tion as a binding agreement that constrains player activities (Myerson 1980; Slikker and van den Nouweland 2001; 
Caulier et al. 2013; Caulier, Mauleon, and Vannetelbosch 2015).

5 In Section ​2​ of the online Appendix, we show formally that the connections model with the pairwise stability 
solution concept is a special case of our framework with Open Clubwise Stability.
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real life, both types of weak ties are observed, and their relative importance depends 
upon the context. This paper highlights the trade-off between the two types of weak 
links—indirect connections composed of “high-quality” links (the connection goes 
through a series of small clubs) and direct “low-quality” links (“produced” in large 
clubs).6

In our club formation model, when the membership fee is sufficiently low, the 
environment wherein every pair of individuals shares a single club of size two is the 
unique stable environment, as the complete network is induced with high-quality 
links. When the membership fee is higher, this environment is no longer sustainable 
and “weak ties” appear. We show that when congestion friction is higher than depre-
ciation friction, a stable environment is one based on “weak ties” of the indirect 
connections type. When depreciation is more significant than congestion, a stable 
environment is one based on “weak ties” generated in large clubs. In particular, our 
model predicts that complete networks can survive high membership costs if con-
gestion is weaker than endogenous depreciation.

The trade-off between congestion and indirect connections is further demonstrated 
by considering the following two special environments: ​m​-Complete and ​m​-Star. 
In ​m​-Complete environments, every pair of individuals shares exactly one club that 
includes ​m​ members, and therefore every pair of individuals is directly connected 
via a congested link (unless ​m  =  2​). In ​m​-Star environments, one individual (the 
“star”) is affiliated with all the populated clubs, the other individuals (the “periph-
erals”) are members of a single club, and all the populated clubs are of size ​m​. 
Therefore, in ​m​-Star environments, every peripheral individual is directly connected 
to ​m − 1​ individuals and indirectly connected to all the rest. We show that when the 
membership fee is low, the efficient environment among the environments where all 
populated clubs are of size ​m​ is the ​m​-Complete environment. The ​m​-Star environ-
ment is efficient for intermediate affiliation fees, while the empty environment is 
efficient for sufficiently high membership costs.

We demonstrate that the stability of the various ​m​-Complete and ​m​-Star environ-
ments can be characterized as a function of the elasticity of congestion relative to 
club size. There is, however, nonmonotonicity in the relationship between conges-
tion and the size of clubs in stable environments. For a substantial set of congestion 
functions, ​m​-Complete environments with intermediate size clubs are never stable, 
while ​m​-Complete environments with either small clubs (wherein each individual 
maintains many high-quality affiliations) or large clubs (wherein each individual 
maintains few low-quality affiliations) are Open Clubwise Stable.

6 Weak ties appear in two branches of the literature on networks in economics. In the literature on the role of 
networks in labor markets, weak ties are typically viewed as cheap, infrequently used direct links that may relay 
useful job information (e.g., Montgomery 1992, 1994; Calvó-Armengol and Zenou 2003; and Kramarz and Skans 
2014). Calvó-Armengol (2004) studies job information transmission through indirect links but does not refer to 
those channels as weak ties. In the literature on the formation of weighted networks (which is frequently motivated 
by Granovetter 1973), the weight is determined endogenously as some function of investments made by both 
end individuals (e.g., Goyal 2005; Brueckner 2006; Goyal, Konovalov, and  Moraga-González 2008; and Bloch 
and Dutta 2009). Another approach is to model resource allocation as a subsequent stage to the formation of the 
network (e.g., Ballester, Calvó-Armengol, and  Zenou 2006; and Cabrales, Calvó-Armengol, and  Zenou 2011). 
Altogether, this literature also interprets weak ties as direct links (with low weights) and does not refer to indirect 
connections as weak ties.
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In real life, a wide range of rules regarding the formation, the joining, or the 
leaving of social clubs are observed. For example, clubs may introduce entry 
barriers wherein acceptance by incumbent members is required in order to join the 
club. Each set of rules induces a different set of possible deviations and therefore 
corresponds to a different stability concept. This clearly affects individual choices 
of clubs and consequently the stable environments. The solution concept of Open 
Clubwise Stability represents an open environment wherein individuals are free to 
join or leave any club they wish and to form new clubs as long as they pay a fixed 
membership fee. To demonstrate the importance of club rules, we introduce the 
Closed Clubwise Stability solution concept, wherein joining a club requires the 
unanimous approval of all existing club members. We demonstrate that these two 
concepts may lead to dramatically different stable environments.

Establishing social connections via clubs yields different types of social networks 
than those formed in the regular framework of network formation. In particular, the 
club setting provides an alternative explanation for the extensive clustering that char-
acterizes real-life social networks. In most real-life networks, the probability of two 
individuals being connected if they are linked with a common individual is much 
higher than it would be if the connections were formed randomly (for reviews, see 
Goyal 2007 and Jackson 2008). The social networks literature frequently attributes 
the high clustering to one of two explanations: First, individuals may have a prefer-
ence for connections with individuals with whom they share a neighbor (preference 
for transitivity). Second, individuals may prefer to link to individuals with whom 
they share social traits (homophily). We argue that simultaneous formation of clubs 
and networks provides a third explanation for the high clustering observed in real-life 
networks, since each club is manifested as a clique in the induced social network.

I.  Model

An environment is a group of individuals and a set of clubs such that each indi-
vidual is affiliated with a subset of clubs. Formally, ​N  = ​ {1, … , ​n​ a​​}​​ (​​n​ a​​  >  2​) is a 
finite set of individuals, and ​S  = ​ {1, … , ​n​ s​​}​​ is a finite set of clubs. The pair ​​{i, s}​​ 
denotes the affiliation of Individual ​i​ with Club ​s​, and ​​A​​ c​​ is the set of all possible 
affiliations. An environment is the triplet ​G  ≡  〈 N, S, A 〉​, where ​A  ⊆ ​ A​​ c​​ is a set 
of affiliations. We denote the set of all the environments with ​n​ individuals by ​​​n​​​.

7 
We denote the set of clubs that Individual ​i​ is affiliated with in Environment ​G​ 
by ​​S​ G​​​(i)​​, and ​​s​ G​​​(i)​  ≡  |​S​ G​​​(i)​|​ denotes its cardinality. In addition, we denote by  
​​N​ G​​​(s)​​ the set of individuals that are affiliated with Club ​s​ in 
Environment ​G​, and ​​n​ G​​​(s)​  ≡  |​N​ G​​​(s)​|​ denotes its cardinality. The environment 
that results from adding (severing) ​​{i, s}​​ to (from) Environment ​G​ is denoted by  
​G + ​{i, s}​  ≡  ​ ⟨N, S, A  ∪ ​ {{i, s}}​⟩​ ​ (similarly, ​G − ​{i, s}​​). Let ​s  ∈  S​ be a vacant 
club (we assume that such club always exists), and let ​m  ⊆  N​. Then, ​G + m​ is the 

7 A graph ​G  =  〈 V, E 〉​ is called bipartite or two-mode network if ​V​ admits a partition into two classes (​U​, ​V \U​) 
such that ​∀  ​(​v​ 1​​, ​v​ 2​​)​  ∈  E: ​v​ 1​​  ∈  U, ​v​ 2​​  ∈  V \U​. An environment can be described as a bipartite graph wherein one 
set of nodes is the set of individuals and the other is the set of clubs. This representation is often referred to 
as an affiliation network. An additional way to represent an environment is by a hypergraph. A hypergraph is a 
pair ​H  =  〈 U, ME 〉​ wherein the elements of ​ME​ (clubs) are subsets of ​U​ (individuals).
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environment that emerges from Environment ​G​ when the set ​m​ of individuals popu-
lates the vacant club ​s​. Let ​c​ denote the club membership fee, which is identical for 
all individuals in all clubs.8

Every Environment ​G​ induces an undirected network ​g​ whose nodes represent 
individuals, and two individuals are linked in ​g​ if they belong to the same 
club. We denote the weight of a link between two individuals ​i, i′  ∈  N​ in ​G​ by  
​w​(i, i′, G)​  ∈ ​ [ 0, 1 ]​​. In this general setting, the weight can be a function of the whole 
environment, and its interpretation is the quality of the link—the higher the weight 
is, the “stronger” the link.

Formally, a weighted network is a triplet ​〈 N, E, W 〉​ wherein ​N​ is the set of 
individuals, ​E​ is the set of links, and ​W : E  → ​ [0, 1]​​ the set of weights. The 
weighted network ​g  =  〈 N, ​E​ G​​, ​W​ G,w​​ 〉​ is induced by Environment ​G​ and weight-
ing function ​w​ if ​​E​ G​​  ≡ ​ {​{i, j}​ | i  ∈  N, j  ∈  N, ​S​ G​​​(i)​  ∩ ​ S​ G​​​( j)​  ≠  ∅}​​ and  
​∀ ​{i, j}​  ∈ ​ E​ G​​ : ​W​ G,w​​​(​{i, j}​)​  ≡  w​(i, j, G)​​. Note that each environment has another 
induced undirected network whose nodes represent clubs and that two clubs are 
linked if there is an individual that affiliates with both. Fershtman and Gandal (2011) 
take advantage of this duality to study the open-source environment.

We assume that individuals benefit from being connected, either directly or 
indirectly, to other individuals. Multiple affiliations facilitate indirect connections. 
Indirect connection between a pair of individuals occurs whenever a third party 
shares a club with each of the two individuals (see, for example, Faust 1997). 
Formally, a path of length ​l − 1​ between Individual ​i​ and Individual ​i′​ in the 
induced network ​g​ is a sequence of individuals ​​{​x​ 1​​, ​x​ 2​​, … , ​x​ l−1​​, ​x​ l​​}​​ such that ​​x​ 1​​  =  i​ 
and ​​x​ l​​  =  i′​, and every consecutive pair of individuals, ​​x​ k​​​ and ​​x​ k+1​​​, shares at least one 
club in ​G​. Two individuals who share at least one club are directly connected, and 
two individuals who do not share a club in Environment ​G​ are indirectly connected 
if there is a path between them in ​g​. If every pair of individuals is connected (either 
directly or indirectly), then ​g​ is connected; otherwise, it is disconnected. We say that 
Environment ​G​ is connected if its induced network ​g​ is connected.9

The weight of a path is the product of the weights on the links that constitute 
this path. That is, let ​g  =  〈 N, E, W 〉​ be a weighted network. The weight of the path  
​p  = ​ {​x​ 1​​, … , ​x​ l​​}​​ is ​W ​P​ g​​​(p)​  = ​ ∏ k=1​ 

l−1 ​​W​(​{​x​ k​​, ​x​ k+1​​}​)​​. Path ​p​ is a shortest weighted 
path between Individuals ​i​ and ​​i ′ ​​ if and only if there is no path ​p′​ between individu-
als ​i​ and ​i′​ such that ​W​P​ g​​​(p′)​  >  W​P​ g​​​(p)​​. The distance between Individuals ​i​ and ​i′​ 
in ​G​ using weighting function ​w​, denoted ​d​(i, i′ | G, w)​​, is the weight of the shortest 
weighted path between them in the induced network ​g​. If there is no such path,  
​d​(i, i′ | G, w)​  =  0​. Individuals benefit from short distances to other individuals. The 
utility of Individual ​i​ is given by ​​u​ i​​​(G, w, c)​  = ​ ∑ k∈N, k≠i​ 

 
 ​​  d​(i, k | G, w)​ − ​s​ G​​​(i)​ × c​.

8 For simplicity, we assume that the membership fee is fixed. More generally, one may consider a case where 
the club membership fee depends on the size of the club or its composition (e.g., Buchanan 1965; McGuire 1974; 
Wooders 1988, 1989; Haller 2016).

9 Consider two environments: ​G  =  〈 N, S, A 〉​ and ​G′  =  〈 N′, S′, A′ 〉​. If ​​S ′ ​  ⊆  S​, ​N ′  = ​ ∪​s∈​S ′ ​​​ ​N​ G​​​(s)​​ and  
​A′  = ​ {​{i, s}​ | i  ∈  N′, s  ∈ ​ S ′ ​, ​{i, s}​  ∈  A}​​, then ​G ′​ is a subenvironment of ​G​ and ​G​ is a superenvironment of ​G ′​. If, 
in addition, ​N′  =  N​, then ​G′​ is a spanning subenvironment of ​G​ and ​G​ is a spanning superenvironment of ​G′​. The 
subenvironment ​G′  =  〈 N ′, S′, A′ 〉​ of ​G  =  〈 N, S, A 〉​ is a component of ​G​ if its induced network ​g′​ is connected and 
there is no pair of individuals ​i  ∈  N ′​ and ​k  ∈  N \ N′​ who share a club in ​G​. We denote the size of the component ​G​​′​ 
by ​n​(G′ )​  =  | N ′ |​.
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Figure 1 provides a simple example. The two leftmost cells describe an envi-
ronment containing four individuals and four populated clubs wherein Individual ​1​ 
shares a club of size two with each of the other three individuals, who among them-
selves share an additional club of size three. Therefore, the induced weighted net-
work is the complete network depicted in the next cell. The weights on the links 
are such that a club of size two provides a link of strength ​a + δ​, while a club of 
size three provides a weaker link of strength ​a + ​δ​​ 2​​ (​δ  ∈ ​ (0, 1)​​, ​a  ∈ ​ [ 0, 1)​​ and  
​a + δ  ∈ ​ (0, 1)​​). Finally, the utilities of the individuals are documented in the right-
most column. As this example demonstrates, the shortest distance is not necessarily 
the path that includes the least number of links.

Environment ​G​ is Open Clubwise Stable (henceforth, OCS) if no individual 
strictly gains from leaving a club, no individual strictly gains from joining a club, 
and there is no subset of individuals who are all better off forming a new club 
together. Formally, the conditions for OCS are:

	 (i)	 No Leaving: ​∀ s  ∈  S, ∀ i  ∈ ​ N​ G​​​(s)​: ​u​ i​​​(G, w, c)​  ≥ ​ u​ i​​​(G − ​{i, s}​, w, c)​​.

	 (ii)	 No New Club Formation: ​∀ m  ⊆  N:  ∃ i  ∈  m : ​u​ i​​​(G + m, w, c)​  > ​ u​ i​​​(G, w, c)​ 
⇒  ∃ j  ∈  m : ​u​ j​​​(G + m, w, c)​  < ​ u​ j​​​(G, w, c)​​.

	 (iii)	 No Joining: ​∀ s  ∈  S, ∀ i  ∉ ​ N​ G​​​(s)​: ​u​ i​​​(G, w, c)​  ≥ ​ u​ i​​​(G + ​{i, s}​, w, c)​​.

Environment ​G​ is Strongly Efficient (henceforth, SE) if there is no other environ-
ment ​G′​ such that ​​∑ i∈N​ 

 
 ​​ ​ u​ i​​​(G′, w, c)​  > ​ ∑ i∈N​ 

 
 ​​ ​ u​ i​​​(G, w, c)​​.

The following environments are instrumental in characterizing stable and effi-
cient environments in this setting:

	 (i)	​ G  =  〈 N, S, ∅ 〉​ is the Empty environment.

	 (ii)	​ G​ is the Grand Club environment if there is exactly one populated club and 
all the individuals are affiliated with it.

	 (iii)	​ G​ is the All Paired environment if every pair of individuals shares a unique 
club of size two.

Figure 1. An Environment, Its Induced Weighted Social Network, and the Individuals’ Utilities
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II.  The Baseline Model: No Congestion

We start by considering the simple setting in which all weights are set to  
​1​ (​w​(i, j, G)​​ is identically ​1​), implying that the distance between two individuals is ​1​ 
if they are (either directly or indirectly) connected and ​0​ otherwise.

When membership is free, individuals wish to maximize the number of other 
individuals with whom they are connected, either directly or indirectly. In this case, 
it is hardly surprising that every connected environment is both stable and efficient.

For the case of a positive membership fee, we say that Environment ​G​ is 
Minimally Connected if it is connected and for every affiliation ​​{i, s}​  ∈  A​, the 
network induced by ​G − ​{i, s}​​ is disconnected. In fact, it is easy to show that  
​G − ​{i, s}​​ contains exactly two components—one that contains Individual ​i​,  
denoted ​​C​ i​​​(G − ​{i, s}​)​​, and one that does not contain Individual ​i​, denoted  
​​C​ −i​​​(G − ​{i, s}​)​​. In the setting with no congestion, the size of ​​C​ −i​​​(G − ​{i, s}​)​​ is 
the loss incurred by Individual ​i​ upon canceling the affiliation with Club ​s​. We say 
that the “weakest affiliation” in Environment ​G​ is the one whose absence leads to 
the smallest ​​C​ −i​​​(G − ​{i, s}​)​​. We classify the Minimally Connected environments 
by their “weakest affiliation,” defined by ​K​(G)​  = ​ min​​{i,s}​∈A​​ n​(​C​ −i​​​(G − ​{i, s}​))​​​,  
where ​n​(C)​​ is the number of individuals in component ​C​. Figure 2 demonstrates this 
classification on some Minimally Connected environments that contain five​​ individuals.

PROPOSITION 1: Suppose that for every Environment ​G​ and for every pair of 
Individuals ​i​ and ​j​ who share a club in ​G​, ​w​(i, j, G)​  =  1​. (i ) When ​​n​ a​​ − 1  >  c  >  0​, 
(a) ​G​ is a Minimally Connected environment of class ​K​(G)​  ≥  c​ if and only if ​G​ is 
OCS and (b) the Grand Club is the unique SE environment. (ii) When ​c  > ​ n​ a​​ − 1​, 
the Empty environment is the unique OCS and SE environment.

All proofs are relegated to Appendix A of the online Appendix. The intuition 
behind Proposition 1: First, note that for ​​n​ a​​ − 1  >  c  >  0​, the Grand Club envi-
ronment is OCS, while the Empty environment is not. Hence, if ​G​ is OCS and 
disconnected, there must be a component ​H​ that contains ​​n​ a​​  >  h  >  1​ individuals. 
Since the maximal possible utility of an individual in ​H​ is ​​(h − 1)​ − c​, and since ​G​ 
is OCS, then ​c  <  h − 1​. But then it is beneficial for every individual who is not 
included in ​H​ to join any one of ​H​ ’s clubs. Therefore, if ​G​ is OCS, then it is con-
nected. But if it is not minimally connected, then there is an individual who may 
want to leave a club since leaving will not affect network connectivity (i.e., the indi-
vidual’s benefits). Finally, if the membership costs are higher than the value of the 
“weakest affiliation,” then there will be individuals who can improve by canceling 
one of their affiliations.10

10 Bar (2005) also considers a model of strategic formation that includes club structure. However, it ignores any 
type of congestion, and therefore its results are comparable to our Proposition 1 with some minor differences. See 
also Jun and Kim (2009); Borgs et al. (2011); and So, Mui, and Rai (2017).
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III.  The Club Congestion Model

The quality of the connections generated within a club may depend on the size 
of the club. If many individuals are affiliated with the club, the “quality” of the 
connection between any two members is probably lower than the “quality” of the 
connection between any two members of a small club. For example, consider the 
difference between belonging to a club of 5 individuals who attended the same col-
lege together versus being a member of a club of over 200 members for the class of 
’87 at a high school. In this model, we capture “quality” by assuming that links are 
weighted and that the weight of each link depends upon the size of the club shared 
by the individuals. Specifically, the club congestion function is a nonincreasing 
function ​h : ​{2, 3, … , ​n​ a​​}​  → ​ [0, 1]​​. Furthermore, we assume that when individ-
uals share more than one club, the weight of the link between them is determined 
by the congestion in the smallest club that they share. Formally, given club con-
gestion function ​h​, the weight of a link between two individuals ​i, i′  ∈  N​ is ​​w​ h​​​

(i, i′, G)​  = ​ max​s∈​S​G​​​(i)​ ∩ ​S​G​​​( j)​​​ h​(​n​ G​​​(s)​)​​.
Even without congestion, the affiliations of one individual may affect the social 

network of other individuals. Unilateral actions such as leaving a club or joining a 
club may benefit or harm other individuals by creating new links (either direct or 
indirect) or by “breaking” some of the shortest paths. Incorporating congestion into 
the club formation setting introduces a new type of externality whereby these uni-
lateral actions may also affect the quality of some links. For example, if Individual ​j​ 
joins a club with which Individual ​i​ is also affiliated, then the quality of some links 
that Individual ​i​ maintains may change—either by making some paths shorter or by 
reducing the weight of some links due to stronger congestion. While this externality 
does not affect an individual’s decision either to join or leave a club (Individual ​j​ 
in the example), it clearly affects the social desirability of the new environment. 
Importantly, while unilateral actions may have positive or negative externalities, 
the formation of a new club can never hurt uninvolved individuals. Therefore, if 

Figure 2. Three Minimally Connected Environments of Five Individuals, Their Induced Networks, and 
Their Classes
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Environment ​G​ is Strongly Efficient, then it must satisfy the condition of “No New 
Club Formation.”

Our analysis of club congestion begins by examining the simple case in which 
membership is free. Clearly, if ​1  >  h​(2)​  >  h​(3)​​, then the only OCS environ-
ments are the spanning super environments of the All Paired environment, and these 
are also the only efficient environments. That is, in any efficient OCS environment, 
every pair of individuals must share a club of size two. Therefore, the induced net-
work is complete, and the weights on the links are the highest possible since club 
congestion is at its minimum.

We now turn to consider the club congestion model with positive membership 
fee. We begin with some preliminary results and necessary definitions, then in 
Section IIIA we move to introduce two families of architectures—the ​m​-Complete 
environments and the ​m​-Star environments. Section  IIIB provides a result on the 
efficient architectures in the club congestion model. Sections IIIC and IIID analyze 
the Open Clubwise Stability of the ​m​-Complete environments and the ​m​-Star envi-
ronments. Section IIIE uses these results to provide a novel insight on the nature of 
weak links.

For our first result, note that an individual holds at most ​​n​ a​​ − 1​ links in the induced 
network and that this network includes at most ​​n​ a​​​(​n​ a​​ − 1)​/2​ links. Since each link is 
determined by a single club—the smallest club the two individuals share—we can 
establish an upper bound on the number of affiliations per individual and the number 
of populated clubs in an OCS environment assuming affiliations are costly.

LEMMA 1: Suppose ​c  >  0​. If Environment ​G  =  〈 N, S, A 〉​ is OCS, then

	 (i )	​ ∀ i  ∈  N: ​s​ G​​​(i)​  ≤ ​ n​ a​​ − 1​;

	 (ii )	​​ |​{s  ∈  S |  ​n​ G​​​(s)​  >  0}​|​  ≤ ​ 
​n​ a​​​(​n​ a​​ − 1)​

 _ 2 ​​  .

The number of possible clubs in an environment with ​​n​ a​​​ individuals is  
​​2​​ ​n​a​​​ − ​(​n​ a​​ + 1)​​. Therefore, Lemma 1(ii) implies that OCS environments in the club 
congestion model include relatively few populated clubs.11

The set of OCS environments in the club congestion model with positive 
membership fee crucially depends on the properties of the congestion function. We 
therefore introduce two functional forms of club congestion, reciprocal club conges-
tion and exponential club congestion. These will be useful in demonstrating some of 
the results in the upcoming analysis.

11 For example, for ​10​ individuals there are ​1,013​ possible clubs, but an OCS environment includes at most ​45​ 
populated clubs. We use Lemma 1 in the MATLAB code package that accompanies this work. (The package can be 
found on GitHub: https://github.com/omri1348/Social-Clubs-and-Social-Networks/tree/master/code.)

https://github.com/omri1348/Social-Clubs-and-Social-Networks/tree/master/code
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Reciprocal Club Congestion: Environment ​G​ is characterized by reciprocal club 
congestion if ​∀ m  ≥  2: h​(m)​  =  1/(m − 1)​.

Exponential Club Congestion: Environment ​G​ is characterized by exponen-
tial club congestion if ​h​(m)​  =  a + ​δ​​ m−1​​ where ​δ  ∈ ​ (0, 1)​​, ​a  ∈ ​ [0, 1)​​, and  
​a + δ  ∈ ​ (0, 1)​​.

The reciprocal club congestion function can be interpreted as one unit of atten-
tion that individuals in a club uniformly lavish upon the other club members. The 
exponential club congestion function is the sum of two components. The first, rep-
resenting the role of the club as an institution that connects individuals, is a constant 
denoted by ​a​, and it therefore depends only on individuals’ mutual affiliation. The 
second, which can be interpreted as the prospects of a potential link materializing, is 
an exponential function that decreases with the size of the club, ​​δ​​ m−1​ (δ  ∈ ​ (0, 1)​​).

When individuals are affiliated with a club of size ​m​, they enjoy ​m − 1​ direct 
links to other club members. We define ​​k​ h​​​(m)​  ≡ ​ (m − 1)​ × h​(m)​​ as the Direct 
Club Value (henceforth, DCV). The size of club, ​m​, has two effects on ​​k​ h​​​(m)​​. While 
a bigger club generates more direct connections, these links are of lower quality due 
to club congestion.

The reciprocal club congestion function is a special case of the two effects 
of club size on the DCV canceling each other out, as ​​k​ h​​​(m)​​ is equal to ​1​ inde-
pendent of ​m​. Intuitively, for a club member, the direct value of a club is exactly 
the unit of attention collected from other members. The DCV of the exponential 
club congestion function depends on ​a​ and ​δ​. When ​a  =  0​, it can be shown that 
when ​δ  <  1/2​, the congestion effect is dominant and the DCV is maximized 
when the club is small (​m  =  2​), but when ​δ  >  1/2​, a higher value of ​δ​ implies 
that the DCV is maximized by a larger value of ​m​. When ​a  >  0​, the effect of the 
number of links is reinforced since the aggregate benefit of ​a​ increases linearly  
with ​m​.

To demonstrate the role of the DCV, consider the Empty environment. The 
Empty environment always satisfies the conditions of both “No Leaving” and 
“No Joining.” Therefore, the Empty environment is OCS if and only if the con-
dition of “No New Club Formation” holds. (Hence, if the Empty environment is 
not OCS, it is also inefficient.) Notice that the benefit of an individual from par-
ticipating in the formation of a new club of size ​m​ is exactly the DCV of this 
club, ​​k​ h​​​(m)​​. Therefore, the Empty environment with ​​n​ a​​​ individuals is OCS if and only 
if ​c  ≥ ​ max​m∈​{2, … ,​n​a​​}​​​ ​k​ h​​​(m)​​. For a detailed discussion on the DCV of the exponential 
congestion function and on the stability of the Empty environment, see Section ​3​ in the  
online Appendix.

Lemma 2 below connects the strategic aspects captured by the DCV to the 
properties of the club congestion function. We define the club-size elasticity of 
the club congestion function ​h​ as ​​η​ h​​​(m)​ ≡ ​(​(h(m + 1) − h(m))​/h(m))​/(1/m)​ 
for every club size ​m​, where ​h​(m)​  >  0​ and ​​η​ h​​​(m)​  ≡  0​ otherwise. The function  
​h​(m)​​ is nonnegative and nonincreasing, and therefore ​​η​ h​​​(m)​  ≤  0​. We say that  
​h​(m)​​ is inelastic(elastic) if ​∀ m  ∈ ​ {2, … , ​n​ a​​ − 1}​: ​η​ h​​​(m)​  >  − 1​ (respectively,  
​​η​ h​​​(m)​  <  − 1​).
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LEMMA 2: The club congestion function ​h​(m)​​ is inelastic (elastic) if and only if  
​​k​ h​​​(m)​​ is strictly increasing (decreasing).

A. Two Useful Clubs Architectures

The next step of our analysis is to introduce two new general architectures that 
play a central role in characterizing the stable and efficient environments in the club 
congestion model.

Note that the architectures introduced so far exist for any number of individuals. 
However, the two types of architectures defined below may not exist for some sizes 
of the society due to the familiar integer problems. Such problems, in the context 
of equilibrium existence, were discussed first in the local public good literature, 
starting with Wooders (1978, 1980), and then in the network formation literature, 
starting with Page and  Wooders (2007) and Arnold and  Wooders (2015). While 
several ingenious solution concepts that deal with this problem are provided in 
this literature (e.g., the ergodic club equilibrium of Arnold and Wooders 2015), for 
brevity, in this work we ignore such integer issues.

The ​m​-Complete Environment.—​G​ is an ​m​-Complete environment (​m  ∈  ℕ​, 
​​n​ a​​  ≥  m  ≥  2​) if ​∀ i, i ′  ∈  N: |​S​  G​​​(i)​ ∩ ​S​  G​​​(i′)​|  =  1​ and ​∀ s  ∈  S: ​n​ G​​​(s)​  =  m or  
 ​n​ G​​​(s)​  =  0​. That is, in ​m​-Complete environments, every pair of individuals shares 
exactly one club and all the populated clubs are of the same size, ​m​.12

Figure 3 provides two examples of ​m​-Complete environments. The first example 
exhibits the All Paired environment. Compared to other ​m​-Complete environments, 
the links are stronger, but an individual needs to join more clubs in order to be 
connected to all the other individuals. To demonstrate this trade-off, consider the 
case of the 3-Complete environment with seven individuals. In this environment, 
each individual is a member of three clubs, while in the All Paired environment 
with ​​n​ a​​  =  7​, each individual pays for six memberships. At the same time, the links 
in the network induced by the All Paired environment are stronger than those in the 
network induced by the ​3​-Complete environment.

Another important observation is that in ​m​-Complete environments, indirect 
connections are never the shortest paths, since every pair of individuals is 
connected by a direct link and all links are identically weighted. While most of 
the other environments contain frictions due both to congestion and indirect 
connections, ​m​-Complete environments are free of the friction caused by indirect 
connections.

The ​m​-Star Environment.—In the literature on the strategic formation of social 
networks, the star network often emerges as both stable and efficient for medium 
levels of linking costs. The star structure has one individual who maintains links 
with all the other individuals while these individuals have no additional direct 

12 Given ​​n​ a​​​ and ​m​, a necessary condition for the existence of an ​m​-Complete environment is that  
​(​n​a​​ − 1)/(m − 1​) and ​​(​n​a​​​(​n​a​​ − 1)​)​/​(m​(m − 1)​)​​ are integers. As a combinatorial object, an ​m​-Complete environ-
ment with ​​n​ a​​​ individuals is the “Steiner System” ​S​(t, m, ​n​ a​​)​​, where ​t  =  2​. 
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connections. We generalize this topology by defining the ​m​-Star environment, where 
the size of the clubs is ​m  ≥  2​, one individual is a member of all clubs, and all other 
individuals are members of a single club.13 This is described formally as follows:

​𝐦​-Star: ​G​ is an ​m​-Star environment (​m  ∈  ℕ​, ​​n​ a​​  ≥  m  ≥  2​) if

	 (i )	​ ∀ s  ∈  S: ​n​ G​​​(s)​  =  m  or ​ n​ G​​​(s)​  =  0​;

	 (ii )	​ ∃ i  ∈  N such that ∀ s′, s″  ∈ ​ {s | ​n​ G​​​(s)​  >  0}​: ​N​ G​​​(s′)​ ∩ ​N​ G​​​(s″ )​  = ​ {i}​​;

	 (iii)	​ ∀ j  ∈  N \​{i}​: ​s​ G​​​( j)​  =  1​.

Two ​m​-Star environments are demonstrated in Figure 4. In ​2​-Star environments, 
there is one individual who is a member of ​​n​ a​​ − 1​ clubs of size two with all the other 
individuals and therefore provides all the connectivity in the induced network. Each 
club in this example induces a weight of ​a + δ​, and the distance between each pair 
of these ​​n​ a​​ − 1​ individuals is ​​​(a + δ)​​​ 2​​.

In the ​3​-Star environment, all clubs are of size three and include one special indi-
vidual. Compared to the ​2​-Star environment, the central individual in the ​3​-Star envi-
ronment pays lower membership fees but suffers greater congestion. The larger ​m​, 
the more direct connections peripheral individuals have but the lower the quality of 
their connections, both direct and indirect. Thus, while individuals in ​m​-Complete 

13 Given ​​n​ a​​​ and ​m​, a necessary and sufficient condition for the existence of an ​m​-Star environment is that  
​​(​n​ a​​ − 1)​/​(m − 1)​​ is an integer. Note that these networks are special cases of the ​m − 1​-quilts introduced by Jackson,  
Rodriguez-Barraquer, and Tan (2012).

Figure 3. Two m-Complete Environments, Their Induced Weighted Networks  
(Weighted by the Exponential Club Congestion Function), and the Individuals’ Utilities
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environments suffer only from congestion and individuals in ​2​-Star environments 
suffer only from depreciation caused by their indirect connections, individuals 
in ​m​-Star environments generally suffer from both types of frictions.

B. Efficiency

In many standard homogeneous models of strategic network formation (e.g., the 
connections model of Jackson and Wolinsky 1996), strongly efficient topologies are 
the complete network for low linking costs, the star network for medium linking 
costs, and the empty network for high linking costs. These results reflect the benefits 
of direct linking and the role of short indirect connections as a substitute for direct 
connections when linking costs are substantial.

Proposition 2 demonstrates that a similar intuition pertains in the club conges-
tion  model with respect to constant levels of congestion. In order to control for 
the level of congestion friction, we consider the set of ​m​-Uniform environments 
in which all populated clubs are of size ​m​. That is, ​G​ is an ​m​-Uniform environ-
ment (​m  ∈ ​ {2, … , ​n​ a​​}​​) if ​∀ s  ∈  S: ​n​ G​​​(s)​  =  m or ​n​ G​​​(s)​  =  0​. Denote the set 
of all ​m​-Uniform environments with ​n​ individuals by ​​​ n​ 

m​​, and denote the set of 
all uniform environments with ​n​ individuals by ​​​ n​ 

all​  = ​ ∪​ k=2​ 
​n​a​​

 ​ ​ ​ n​ 
k ​​. Proposition 2 

implies that the strongly efficient uniform environments are ​m​-Complete, ​m​-Star,  
or Empty.

PROPOSITION 2: Let ​m  ∈ ​ {2, … , ​n​ a​​}​​. For every club congestion function ​h​( · )​​ 
and ​m​-Uniform Environment ​G ′  ∈  ​​ n​ 

m​​,

Figure 4. Two m-Star Environments, Their Induced Weighted Networks  
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	 (i )	 Let ​c  ∈ ​ [0, (m − 1)​(h(m) − ​h​​ 2​(m))​]​​, and let ​G​ be an ​m​-Complete 

environment. Then, ​​∑ i=1​ 
​n​a​​ ​​​ u​ i​​​(G, ​w​ h​​, c)​  ≥ ​ ∑ i=1​ 

​n​a​​ ​​​ u​ i​​ ​(G′, ​w​ h​​, c)​​.

	 (ii )	 Let ​c  ∈ ​ [​(m − 1)​​[h​(m)​ − ​h​​ 2​​(m)​]​, ​(m − 1)​h​(m)​ + ​ 
​(​n​ a​​ − m)​​(m − 1)​

  ____________ m  ​ ​h​​ 2​​(m)​]​​  

and let ​G​ be an ​m​-Star environment. Then, ​​∑ i=1​ 
​n​a​​ ​​​ u​ i​​​(G, ​w​ h​​, c)​  ≥  

​∑ i=1​ 
​n​a​​ ​​​ u​ i​​​(G′, ​w​ h​​, c)​​.

	 (iii )	 Let ​c  ≥ ​ (m − 1)​h​(m)​ + ​ 
​(​n​ a​​ − m)​​(m − 1)​

  ____________ m  ​ ​h​​ 2​​(m)​​, and let ​G​ be the Empty 

environment. Then, ​​∑ i=1​ 
​n​a​​ ​​​ u​ i​​​(G, ​w​ h​​, c)​  ≥ ​ ∑ i=1​ 

​n​a​​ ​​​ u​ i​​​(G′, ​w​ h​​, c)​​.

Proposition 2 considers the set of environments in which all clubs are of 
size ​m​. When the membership fee is low, the ​m​-Complete environments are effi-
cient. Since ​m​-Complete environments are symmetric across individuals, the upper 
bound is independent of ​​n​ a​​​ and represents the individuals’ preference for costly 
direct links (​​(m − 1)​h​(m)​ − c​) over free indirect links (​​(m − 1)​​h​​ 2​​(m)​​). When the 
membership fee increases, the importance of short indirect connections relative to 
costly direct connections and the low quality of long indirect connections emerge. 
The architecture of ​m​-Star environments implements these preferences since the 
direct connections of the central individual keep the environment connected while 
making all other connections as short as possible. While the lower bound is indepen-
dent of ​​n​ a​​​, the upper bound increases with ​​n​ a​​​ since the larger the environment, the 
larger the return for membership for everyone except the central individual.

In the proof, we first show that when ​c  ≤ ​ (m − 1)​​(h​(m)​ − ​h​​ 2​​(m)​)​​,  
the ​m​-Complete environment achieves maximal total utility among all 
connected ​m​-Uniform environments with no more than ​​(​n​ a​​​(​n​ a​​ − 1)​)​/​(m​(m − 1)​)​​ 
clubs due to the high quality of the direct connections. This result also holds when 
the ​m​-Complete environment is compared to large connected ​m​-Uniform environ-
ments (since additional clubs are redundant) and to disconnected ​m​-Uniform envi-
ronments (since the total utility of the ​m​-Complete environment is convex in ​​n​ a​​​). A 
result on hypergraphs from Berge (1989) is adopted to show that ​m​-Star environments 
minimize the number of clubs required for an ​m​-Uniform environment to be connected.  
When ​c  ≥ ​ (m − 1)​​(h​(m)​ − ​h​​ 2​​(m)​)​​, the ​m​-Star environment achieves the maxi-
mal total utility among all connected ​m​-Uniform environments due to the high quality 
of the indirect connections and the low total membership fees. This result also holds 
when the ​m​-Star environment is compared to nonempty disconnected ​m​-Uniform 
environments since the union of two stars has a higher total utility than the sum of 
the totals of the two stars (due to additional indirect connections). The third part 
results from the fact that when ​c  > ​ (m − 1)​h​(m)​ + ​(​(​n​ a​​ − m)​​(m − 1)​/m)​ ​h​​ 2​​(m)​​, 
the total utility of the ​m​-Star environment is negative.

The comparison of efficient uniform environments across club sizes 
depends on the specific congestion function. However, two implications can 
be drawn from Proposition 2. One is that when the membership fee is below  
​​min​m∈​{2, … ,​n​a​​}​​​​(m − 1)​​(h​(m)​ − ​h​​ 2​​(m)​)​​, the environment that achieves the 
maximal total utility among all uniform environments must be an ​m​-Complete 
environment. The other is that since the maximal DCV across club sizes is greater 
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than ​​max​m∈​{2, … ,​n​a​​}​​​​(m − 1)​​(h​(m)​ − ​h​​ 2​​(m)​)​​, among all uniform environments, 
only an ​m​-Star environment or the Empty environment may achieve maximal 
total utility when the membership fee is higher than the maximal DCV across  
club sizes.

C. The Stability of ​m​-Complete Environments

The ​m​-Complete environment is OCS only when the membership fee is neither 
too high nor too low. Low membership fee is an incentive to form new small clubs 
(if ​m  >  2​), while high membership fee is an incentive to leave one of the clubs, 
replacing direct connections with indirect ones. Note that in the ​m​-Complete envi-
ronment, the “No Joining” condition is irrelevant since if an individual joins an 
existing club, that individual pays additional membership fee but creates no new (or 
better) connections.

PROPOSITION 3: Let ​​k ˆ ​​ denote the club size that maximizes the Direct Club Value, 
and let ​​n​ a​​  >  m  ≥  2​. An ​m​-Complete environment is OCS if and only if

​c  ∈ ​
[

​  max​ 
k∈​{2, … ,min​{m−1, ​k ˆ ​}​}​

​​​(k − 1)​​[h​(k)​ − h​(m)​]​, ​(m − 1)​​[h​(m)​ − ​h​​ 2​​(m)​]​
]

​​ .

In m-Complete environments, forming new clubs of sizes smaller than ​m​ may 
reduce congestion. Hence, the lower bound of Proposition 3 implies that a necessary 
condition for an ​m​-Complete environment to be OCS is that the membership fee is 
high enough to preclude new clubs from being formed. The benefit of a coalitional 
deviation to a club of size ​k  <  m​ is its DCV (​​(k − 1)​h​(k)​​) net the value of these 
links in the original environment (​​(k − 1)​h​(m)​​). The DCV applies here since 
indirect connections never constitute the shortest path for new club formation 
deviations in ​m​-Complete environments. Note that the larger the new club, the larger 
the number of original links whose value has been lost. Hence, deviation to clubs 
with more than ​​k ˆ ​​ members is less attractive than deviation to clubs of size ​​k ˆ ​​ because 
of the lower DCV and the greater loss of original value.

An individual may consider leaving a club to trade off reduced membership 
payments with replacing some direct connections with indirect ones (all individuals 
maintain multiple memberships, ​​n​ a​​  >  m​). Proposition 3 guarantees that the mem-
bership fee is not high enough to make such a trade-off worthwhile. Note that the 
existence of a stable ​m​-Complete environment is not guaranteed. It is possible that 
the lower bound is higher than the upper bound (see further discussion in Section ​4​ 
of the online Appendix).

We now focus on two extreme cases that are of special interest—the All Paired 
and the Grand Club environments. The stability of these environments depends on 
the relative importance of the two frictions—club congestion and the membership 
fee. While in the All Paired environment individuals suffer high membership fees 
(​n − 1​ clubs) but no club congestion, in the Grand Club environment, congestion is 
strong but membership fees are minimal.
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The Stability of the All Paired Environment.—In the All Paired environment, 
the individuals suffer no congestion and no depreciation. When membership fee is 
introduced, the strict superenvironments of the All Paired are no longer OCS since 
redundancy is costly. In the All Paired environment, joining an existing club or form-
ing a new one never constitutes a beneficial deviation, since additional affiliations 
are costly and individuals already share small clubs with everyone else. Therefore, 
only incentives to leave a club and use an indirect connection instead are relevant. 
As long as the gain from a direct connection (​h​(2)​ − c​) is greater than an indirect 
connection (​​h​​ 2​​(2)​​), the All Paired environment is OCS.

This argument, however, does not rule out the stability of environments 
wherein the smallest club shared by some pair of individuals is larger than 
size ​two​. Such environments are not OCS if the cost of forming a new club of 
size ​two​ is lower than the benefit derived from eliminating the club congestion 
suffered by this pair, that is, when ​h​(2)​ − h​(3)​  >  c​. Therefore, the uniqueness 
of the All Paired environment is guaranteed when the membership fee is small 
enough to allow individuals to form new two-individual clubs in order to resolve 
both the friction created by indirect connections and the friction of club conges-
tion. Formally, the All Paired environment is the unique OCS environment when  
​c  ∈ ​ (0, min​{h​(2)​ − ​h​​ 2​​(2)​, h​(2)​ − h​(3)​}​)​​. In fact, in this range, the All Paired 
environment is also the unique SE.

The Stability of the Grand Club Environment.—In the Grand Club environment, 
individuals suffer severe club congestion but no depreciation friction and mini-
mal membership fees. Proposition 1 states that when there is no club congestion 
and ​​n​ a​​ − 1  >  c  >  0​, the Grand Club environment is both OCS and the unique 
efficient environment. Claim 1(i) provides a necessary and sufficient condition for 
the existence of OCS Grand Club environment when congestion exists.

CLAIM 1: Denote by ​​k ˆ ​​ the club size that maximizes the Direct Club Value.

	 (i )	 The Grand Club environment is OCS if and only if

	​ c  ∈ ​
[
​  max​ 
k∈​{2, … ,min​{​n​a​​−1, ​k ˆ ​}​}​

​​​(k − 1)​​[h​(k)​ − h​(​n​ a​​)​]​, ​(​n​ a​​ − 1)​h​(​n​ a​​)​
]
​​.

	 (ii )	 If the club congestion function is inelastic, a range of membership fees in 
which the Grand Club environment is OCS exists.

	 (iii )	 Let ​​n​ a​​  ≥  4​ and let ​h​( · )​​ be an exponential club congestion function where ​
δ  ∈ ​ (0, 1/ 2)​​. For ​a  =  0​, the Grand Club environment is never OCS. But 
if ​a  >  0​, there exists an ​​​n –​​a​​​ such that ​∀  ​n​ a​​: ​n​ a​​  > ​​ n –​​a​​​, a range of membership 
fees in which the Grand Club environment is OCS exists.

Since the DCV of the reciprocal club congestion function is unity, the most attrac-
tive deviation from the Grand Club environment is to a club of size​ two​ (wherein the 
loss of original value is minimal). Therefore, when club congestion is reciprocal, the  
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Grand Club environment is OCS if and only if ​c  ∈ ​ [1 − ​(1/(​n​ a​​ − 1))​ , 1]​​. Hence, 
when the club congestion function is reciprocal, a range of membership fees in 
which the Grand Club environment is OCS always exists. Generally, however, 
Claim 1(i) does not guarantee that such a range exists. Nevertheless, Lemma 2 is 
used to demonstrates that when club congestion is not too sensitive to club size, the 
Grand Club environment is OCS for some range of membership fees (Claim 1(ii)).

When the club congestion function is exponential, Claim 1(ii) guarantees that 
the Grand Club environment is OCS for some range of membership fees in some 
cases (e.g., when ​a  =  0​ and ​δ  >  1 − (1/​n​a​​)​ ). The case of ​δ  ∈ ​ (0, 1 / 2)​​, wherein 
the congestion component of the club congestion function is substantial, is ana-
lyzed in Claim 1(iii). The first part demonstrates that when there is no noncongested 
component, congestion is too strong for a Grand Club environment to be OCS. 
However, if there is some noncongested component, the Grand Club environment 
can be OCS for some range of membership fees as long as the set of individuals is 
large enough to make the noncongested part important. A sociological interpretation 
may imply that social solidarity (which does not depend on club size) may be useful 
in maintaining big clubs even when club congestion is strong.

D. The Stability of ​m​-Star Environments

An ​m​-Star environment is OCS if no individual wishes to join or leave an existing 
club and no subset of individuals benefits from forming a new club.

The central individual prefers to leave a club when the membership fee is higher 
than the benefit derived from direct links to the individuals in the club. A peripheral 
individual wishes to leave a club when the membership fee is higher than the benefit 
of direct links to other club members and indirect connections to all other periph-
eral individuals. Therefore, the peripheral individuals’ incentives to leave a club are 
weaker than those of the central individual. Thus, the upper bound on the range of 
membership fees in which an ​m​-Star environment is OCS depends on the central 
individual’s incentives. Since, by leaving a club, the central individual disconnects 
from the other members of the club, the upper bound is higher than in ​m​-Complete 
environments where direct links that have been lost can be replaced by indirect 
connections.

Joining an existing populated club is not a relevant consideration for the central 
individual, since this individual is already a member of all populated clubs. When 
joining an existing club, a peripheral individual replaces ​m − 1​ indirect connections 
with costly and congested direct connections (relative to existing direct connec-
tions). Thus, the lower bound on the range of membership fees in which an ​m​-Star 
environment is OCS should be high enough to make the existing indirect connec-
tions more attractive than new direct connections for a peripheral individual.

The third consideration is the formation of a new club. In forming a new club, 
a peripheral individual always gains more than the central individual. If the new 
club  is smaller than ​m​, the central individual only gains from improved direct 
connections, while peripheral individuals also gain from better indirect connections. 
When the new club is weakly larger than ​m​, the central individual gains nothing, while 
peripheral individuals may gain from the new direct links created. Therefore, the  
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lower bound on the range of membership fees for which an ​m​-Star environment 
is OCS should be also high enough to deter peripheral individuals from forming  
new clubs.

A peripheral individual always prefers to form a new club with members of 
other clubs. If the new club is of size ​k  <  m​, sharing it with an individual who 
is also affiliated with the original club yields a single improved direct connection  
(​h​(k)​ − h​(m)​​), while forming the new club with an individual who belongs 
to a different original club turns an indirect connection into a direct one  
(​h​(k)​ − ​h​​ 2​​(m)​​) and may also have a positive effect upon other indirect connections. 
If the new club is not smaller than ​m​, then sharing this new club with an individ-
ual who is also affiliated with the original club yields nothing, while forming a 
new club with an individual who belongs to a different original club may improve 
one indirect connection. Thus, the attractiveness of a new club increases with the 
number of original clubs that are represented in it. Hence, the lower bound on the 
range of membership fees in which an ​m​-Star environment is OCS should be high 
enough to deter peripheral individuals from coordinating the formation of a new 
club that includes a diverse collection of members relative to the original clubs.  
Proposition 4 summarizes these incentives.

PROPOSITION 4: Let ​​n​ a​​  >  m  ≥  2​, and let ​h​( · )​​ be the club congestion function. 
Denote ​γ ≡ (​n​ a​​ − 1)/(m − 1)​, ​​η​k​​ ≡ ⌈k / γ⌉​, and ​​l​ h​​  =  min​{k ∈ 핑 | h​(k)​  ≤ ​ h​​ 2​​(m)​}​​.

	 (i )	 If ​γ  ≥  m​, the ​m​-Star environment is OCS if and only if

	​​ k​  h​​​(m)​  ≥  c  ≥  max​
{

​ max​ 
m≥k≥2

​​​FNS ​h​​​(k, m)​, ​  max​ 
min​{​l​h​​, ​n​a​​}​>k>m

​​​FNL ​h​​​(k, m, ​n​ a​​)​
}

​​.

	 (ii )	 If ​γ  <  m​, the ​m​-Star environment is OCS if and only if 14

	​​ k​  h​​​(m)​  ≥  c  ≥  max ​
{

​J​ h​​ ​(m)​, ​ max​ 
γ≥k≥2

​​ ​FNS ​h​​​(k, m)​, ​ max​ 
m≥k>γ

​​​FNI​ h​​ ​(k, m, ​n​ a​​)​,

	​   max​ 
min​{​l​h​​, ​n​a​​}​>k>m

​​​FNL ​h​​​(k, m, ​n​ a​​)​
}

​​,

		  where

	​​ FNS​ h​​​(k, m)​  =  ​(k − 1)​​[h​(k)​ + ​(m − 2)​h​(k)​h​(m)​ − ​(m − 1)​​h​​ 2​​(m)​]​​,

	​​ FNL​  h​​​(k, m, ​n​ a​​)​  = ​ (k − ​η​k​​)​​(h​(k)​ − ​h​​ 2​​(m)​)​,

	​ FNI​ h​​ ​(k, m, ​n​ a​​)​  = ​ (k − 1)​h​(k)​ − ​(​η​k​​ − 1)​h​(m)​ 

		 + ​(​n​ a​​ − m − ​(k − ​η​k​​)​)​h​(m)​h​(k)​ − ​(​n​ a​​ − m)​​h​​ 2​​(m)​,

	​ J​ h​​​(m)​  = ​ (m − 1)​​[h​(m + 1)​ − ​h​​ 2​​(m)​]​​.

14 If ​​ 
m​(m − 1)​

 _______ ​n​a​​ − 1 ​   <  2​, then ​​FNI ​h​​​(m, m, ​n​ a​​)​  ≥ ​ J​ h​​​(m)​​ and ​​J​ h​​​(m)​​ is not the maximizing element of the lower bound.
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The Stability of a ​2​-Star Environment.—Proposition 4 implies that a ​2​-Star envi-
ronment is OCS if the membership fee is high enough to preclude any subset of 
peripheral individuals from founding a new club that does not include the central 
individual and low enough that it is beneficial for the central individual to maintain 
each affiliation. Claim 2 summarizes the conditions for stability of a ​2​-Star environ-
ment for various characteristics of the club congestion function:

CLAIM 2: Denote ​​l​ h​​  =  min​{k  ∈  핑 | h​(k)​  ≤ ​ h​​ 2​​(2)​}​​.

	 (i )	 Let ​h​( · )​​ be the club congestion function. The ​2​-Star environment is OCS if 
and only if ​h​(2)​  ≥  c  ≥ ​ max​k∈​{2, … ,min​{​l​h​​−1,​n​a​​−1}​}​​​​(k − 1)​​(h​(k)​ − ​h​​ 2​​(2)​)​​.

	 (ii )	 Let ​h​( · )​​ be an elastic club congestion function. The ​2​-Star environment is 
OCS if and only if ​h​(2)​  ≥  c  ≥  h​(2)​ − ​h​​ 2​​(2)​​.

	 (iii )	 Let ​h​( · )​​ be the reciprocal club congestion function. The ​2​-Star environment 
is OCS if and only if ​c  ∈ ​ [0, 1]​​.

	 (iv)	 Let ​h​( · )​​ be the exponential club congestion function. The ​2​-Star environ-
ment is OCS if and only if ​a + δ  ≥  c  ≥ ​ max​k∈​{2,… ,min​{​l​ h​​−1,​n​ a​​−1}​}​​​​(k − 1)​ 

×​(​(a + ​δ​​ k−1​)​ − ​​(a + δ)​​​ 2​)​​. If ​a = 0​, the condition becomes ​c ∈ ​[δ − ​δ​​ 2​, δ]​​.

Individuals in a ​2​-Star environment suffer no congestion. Therefore, indirect 
paths in the ​2​-Star environment can only be improved by direct links. By forming a 
new club of size ​k​ that does not include the central individual, peripheral individuals 
only gain from direct links to other deviators, ​​(k − 1)​​(h​(k)​ − ​h​​ 2​​(2)​)​​. The second 
part shows that when the club congestion function is elastic, there is always a range 
of membership fees wherein the ​2​-Star environment is OCS.15 The third and fourth 
part characterize the existence of a membership fee wherein the ​2​-Star environment 
is OCS given specific club congestion functions.

​m​-Star Environments with ​m  >  2​.—​m​-Star environments where ​m  >  2​ 
are environments where individuals suffer both from the indirect connections 
depreciation friction and from the club congestion friction. Claim 3 provides two 
examples where such environment is Open Clubwise Stable.

CLAIM 3: Let ​​n​ a​​  ≥  9​.

	 (i )	 Let ​h​( · )​​ be the reciprocal club congestion function. The ​3​-Star environment 
is OCS if and only if ​c  =  1​.

15 Generally, the existence of such a range is not guaranteed. Consider, for example, the case where  
​h​(2)​  =  0.3​, ​h​(3)​  =  0.25​, and ​​n​ a​​  ≥  4​. In this case, the central individual would abort her affiliations for every 
membership fee above ​0.3​. However, a triad of peripheral individuals will form a new club if the membership fee is 
lower than ​0.32​. Thus, if ​h​(2)​  =  0.3​, ​h​(3)​  =  0.25​, and ​​n​ a​​  ≥  4​, the ​2​-Star environment is never OCS.
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	 (ii )	 Let ​h​( · )​​ be the exponential club congestion function with ​a  =  0​. The ​3​-Star 
environment is OCS if and only if ​c  ∈ ​ [δ + ​δ​​ 3​ − 2 ​δ​​ 4​, 2 ​δ​​ 2​]​​. This range exists 
if and only if ​δ  ≥  1 / 2​.

When the club congestion function is exponential with ​a  =  0​, we prove that the 
most attractive new club is one formed by two peripheral individuals that do not 
share a club in the ​3​-Star environment. This club provides these individuals with 
a direct link between themselves and an improved indirect link to the noncentral 
individual affiliated with their partner in the original environment. If the conges-
tion friction is strong, then the ​3​-Star environment is never OCS. On the one hand, 
strong congestion leads to small benefits accruing to the central individual from 
each affiliation. On the other hand, due to congestion, the benefit of forming a 
new small club is relatively high. When congestion is weakened (​δ​ increases), the 
incentive for the central individual to leave a club weakens since membership in 
the club becomes more profitable. In addition, peripheral individuals refrain from 
coalitional deviations since the links induced by the original clubs are satisfactory. 
Section ​5​ in the online Appendix provides further analysis of the stability of ​m​-Star  
environments.

E. The Emergence of Weak Links

As previously discussed (Section  IIIC), as long as the membership fee is low 
enough, each individual is able to avoid both congestion and depreciation by 
forming intimate clubs with all other individuals. However, once the membership 
fee becomes higher, weak links emerge as low-quality substitutes. There are two 
types of weak links in the club formation setup. One is based on costless indirect 
links and the other is based on larger clubs that induce low-quality direct con-
nections at low cost (per link) to substitute for costly intimate connections. Our 
analysis highlights the trade-off between these two types of weak links, which 
depends on the severity of the club congestion friction relative to the indirect links 
depreciation friction. This trade-off, therefore, can be captured by the relation-
ship between ​h​(3)​​ and ​​h​​ 2​​(2)​​: ​h​(3)​​ represents the loss due to congestion in a club 
of size ​three​, while ​​h​​ 2​​(2)​​ stands for the loss of indirect connection that includes 
two links formed in clubs of size ​two​. The following discussion is summarized by  
Figure 5.

When club congestion is the stronger friction—that is, ​h​(3)​  < ​ h​​ 2​​(2)​​—the 
All Paired environment is OCS for low membership fee, but for a higher fee  
(​c  ∈ ​ (h​(2)​ − ​h​​ 2​​(2)​, h​(2)​ − h​(3)​)​​), the ​2​-Star environment becomes OCS 
(while the ​3​-Complete environment is not OCS). This result is in line with most 
of the strategic network formation literature. The frugal star architecture emerges 
as an equilibrium that efficiently maintains connectivity at much lower costs. By 
incorporating club formation into the setup of strategic network formation, we 
show that this prediction holds only if congestion is the predominant friction in the 
formation process.

Now we turn to the case where club congestion is the weaker fric-
tion, that is, ​h​(3)​  > ​ h​​ 2​​(2)​​. We assume that the congestion is not too  
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strong, specifically, ​h​(3)​  ≥  0.15​.16 Our previous results imply that in this case, 
the ​3​-Complete environment, rather than the ​2​-Star environment, emerges as 
OCS.17 This result suggests a new insight—larger clubs that induce low-quality 
direct connections at low cost ( per link) turn out to be substitutes for costly intimate 
connections. Hence, when congestion is less substantial than depreciation, weak 
ties are direct congested links. In addition, this implies that when depreciation is the 
stronger friction, complete networks may survive high maintenance costs by reduc-
ing the quality of the links.

When the two frictions are of the same magnitude, ​h​(3)​  = ​ h​​ 2​​(2)​​, both  
​3​-Complete and ​2​-Star environments are OCS once the membership fee is too high 
for the All Paired environment to be OCS. Note, however, that the ​2​-Star environ-
ment is a Minimally Connected environment, while the ​3​-Complete environment 
is not. As a result, the marginal utility of each affiliation in the ​2​-Star environment 
is higher than that of the ​3​-Complete environment. Therefore, the range of costs 
wherein the ​2​-Star environment is OCS is larger than that wherein the ​3​-Complete 
environment is OCS. (For ​c  ∈ ​ (2​(h​(3)​ − ​h​​ 2​​(3)​)​, h​(2)​)​​, the ​2​-Star environment is 
OCS, while the ​3​-Complete is not.)

This case can be demonstrated by an exponential club congestion function 
with ​a  =  0​ (assuming ​δ​ is high enough). The All Paired environment is 
the unique OCS environment when the membership fee is very low and 
the ​2​-Star and ​3​-Complete environments are OCS when ​c​ increases. But when  
​δ  ≥  c  >  2​(​δ​​ 2​ − ​δ​​ 4​)​​, while the ​2​-Star is OCS, the ​3​-Complete environment is not 
OCS, since aborting existing affiliations becomes worthwhile, as indirect connec-
tions are an attractive alternative.

Interestingly, even though congestion in the ​3​-Star environment is similar to 
that of the ​3​-Complete environment, leaving an existing club is not compensated 

16 The lower bound on ​h​(3)​​ is necessary because for very small values of ​h​(3)​​, the ​3​-Complete environment 
may not be OCS even if ​h​(3)​  ≥ ​ h​​ 2​​(2)​​. However, ​0.15​ is not a tight lower bound on ​h​(3)​​. The exact condition is  

​h​(3)​  >  max​{​h​​ 2​​(2)​, (3/4)​[1 − ​√ 
___________

  1 − ​(8h(2)/9)​ ​]​}​​ .
17 The All Paired environment is OCS if and only if ​c  ∈ ​ (0, h​(2)​ − ​h​​ 2​​(2)​)​​, and it is not OCS when  

​c  >  h​(2)​ − ​h​​ 2​​(2)​​. The ​3​-Complete environment is OCS if and only if ​c  ∈ ​ [h​(2)​ − h​(3)​, 2​[h​(3)​ − ​h​​ 2​​(3)​]​]​​. 

If ​c  <  h​(2)​ − ​h​​ 2​​(2)​​, the ​2​-Star environment is not OCS. Using the properties of ​f ​(x)​  =  x − ​x​​ 2​​, it is possible to 
show that ​h​(3)​  > ​ h​​ 2​​(2)​​ implies ​2​[h​(3)​ − ​h​​ 2​​(3)​]​  >  h​(2)​ − ​h​​ 2​​(2)​  >  h​(2)​ − h​(3)​​.

Figure 5. Weak Links as a Function of the Membership Fee
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by indirect connections. Indeed, by Claim 3, if ​δ  ≥  1 / 2​, then for slightly higher 
costs (​δ + ​δ​​ 3​ − 2 ​δ​​ 4​  >  2​(​δ​​ 2​ − ​δ​​ 4​)​​), the ​3​-Star environment is OCS. In fact, when 
​c  ∈ ​ (δ, 2 ​δ​​ 2​]​​, the ​2​-Star environment is not OCS, while the ​3​-Star is OCS due to the 
higher value of a single affiliation to the central individual. This is another demon-
stration of the usefulness of weak ties generated in big clubs.

Things are a bit different if analyzed from social welfare perspective. As was 
previously discussed, the All Paired environment is the SE environment for  
​c  ∈ ​ (0, min​{h​(2)​ − ​h​​ 2​​(2)​, h​(2)​ − h​(3)​}​)​​. When congestion is the stronger fric-
tion, once the membership fee becomes too high (​c  >  h​(2)​ − ​h​​ 2​​(2)​​), the ​2​-Star 
environment is socially preferred to the All Paired and the ​3​-Complete environments. 
In fact, this is still the case when depreciation is the stronger friction (​h​(3)​  > ​ h​​ 2​​(2)​​)  
but congestion is still considerable (e.g., when ​h​(2)​ − h​(3)​  >  h​(3)​ − ​h​​ 2​​(2)​​ 
and ​​n​ a​​​ is large). Thus, the ​3​-Complete environment achieves higher total utility 
than both the All Paired and the ​2​-Star environments for some range of member-
ship fees only when depreciation is the stronger friction and congestion is relatively 
negligible.18 Moreover, as the number of individuals grows, the ​2​-Star environment 
becomes more socially attractive compared to the ​3​-Complete environment since 
the number of clubs (and therefore membership fees) grows linearly in the former 
and quadratically in the latter. Hence, in some cases (e.g., ​​n​ a​​​ is large), individuals 
fail to internalize the effect of congestion and form the ​3​-Complete environment 
while the ​2​-Star is more desirable socially.

In fact, this gap between stability and efficiency is more general. Proposition 3 
shows that the highest membership fee for which an ​m​-Complete environment is 
OCS is ​​(m − 1)​​(h​(m)​ − ​h​​ 2​​(m)​)​​. Since strong efficiency implies satisfying the 
“No New Club Formation” condition, Proposition 2 implies that there is never a case 
wherein an ​m​-Complete environment is strongly efficient and not OCS. The opposite, 
however, as shown above, is possible. For ​m​-Star environments, recall that by 
Proposition 2, ​m​-Star environments are efficient relative to ​m​-Uniform environments 
for some range of membership fees such that ​c  = ​ k​  h​​​(m)​​ is always strictly included 
within this range. By Proposition 4, ​m​-Star environments are never OCS when  
​c  > ​ k​  h​​​(m)​​, meaning that a range of membership fees always exists where ​m​-Star 
environments are not OCS, although they are efficient relative to all ​m​-Uniform envi-
ronments (for numeric examples see Section ​6​ in the online Appendix).

IV.  Club Rules: Closed Clubwise Stability

There are many possible rules regarding the forming, joining, or leaving of social 
clubs. Each set of rules induces a different set of possible deviations and therefore 
corresponds to a different stability concept. So far, we have only considered Open 

18 The total utility in the All Paired environment is ​​n​ a​​​(​n​ a​​ − 1)​​(h​(2)​ − c)​​. The total utility in 
the ​3​-Complete environment is ​​(​n​a​​​(​n​a​​ − 1)​/2)​​(2h​(3)​ − c)​​. The total utility in the ​2​-Star environment is  
​​(​n​ a​​ − 1)​​(h​(2)​ − c)​ + ​(​n​ a​​ − 1)​​(h​(2)​ + ​(​n​ a​​ − 2)​ ​h​​ 2​​(2)​ − c)​​. The All Paired environment dominates 
the ​2​-Star environment if and only if ​c  <  h​(2)​ − ​h​​ 2​​(2)​​ and the ​3​-Complete environment if and only if  
​c  <  2​(h​(2)​ − h​(3)​)​​. The ​3​-Complete environment dominates the ​2​-Star environment if and only if  
​c  < ​ ((2​n​a​​ − 4)/(​n​a​​ − 4))​​(h​(3)​ − ​h​​ 2​​(2)​)​ − ​(4/(​n​a​​ − 4))​​(h​(2)​ − h​(3)​)​​ that approaches ​2​(h​(3)​ − ​h​​ 2​​(2)​)​​ 
from above when ​​n​ a​​​ grows larger.
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Clubwise Stability that implements an open environment in which joining, leaving, 
and formation of clubs are done freely as long as the membership fee is paid. But 
there are environments in which clubs have more restrictive rules. For example, clubs 
in which the acceptance of new members requires the agreement of incumbent club 
members are very common in various social groups (e.g., academic departments, fra-
ternities and sororities, and kibbutzim) as well as in international organizations (e.g., 
the European Union). We demonstrate the application of this club rule by introducing 
the Closed Clubwise Stability solution concept, which considers stability under the 
requirement that incumbents must unanimously approve every new member.19

An Environment ​G​ is Closed Clubwise Stable (henceforth, CCS) if the following 
conditions obtain:

	 (i)	 No Leaving: ​∀ s  ∈  S,  ∀ i  ∈ ​ N​ G​​​(s)​: ​u​ i​​​(G, w, c)​  ≥ ​ u​ i​​​(G − ​{i, s}​, w, c)​​.

	 (ii)	 No New Club Formation: ​∀ m  ⊆  N: ∃ i  ∈  m : ​u​ i​​​(G + m, w, c)​  > ​ u​ i​​​(G, w, c)​ 
⇒​ ​ ∃ j  ∈  m : ​u​ j​​​(G + m, w, c)​  < ​ u​ j​​​(G, w, c)​​.

	 (iii)	 No Joining: ​∀ s  ∈  S, ∀ i  ∉ ​ N​ G​​​(s)​:​ ​​u​ i​​​(G, w, c)​  ≥ ​ u​ i​​​(G + ​{i, s}​, w, c)​​ ​or​ ​
∃ j  ∈ ​ N​ G​​​(s)​: ​u​ j​​​(G, w, c)​  > ​ u​ j​​​(G + ​{i, s}​, w, c)​​.

For an environment to be CCS, the unanimous agreement of incumbent club mem-
bers is required in order to join a club. Since this requirement makes the joining 
deviation harder to execute, Open Clubwise Stability is a refinement of Closed 
Clubwise Stability.

Generally, admission of new members into the club induces both positive and 
negative externalities upon incumbent members. Positive externalities stem from 
new (or shorter) paths provided by the new member. Negative externalities stem 
from the effects of congestion. Clearly, when there is no congestion, incumbents 
receive only positive externalities from admitting new members, and therefore they 
would never object it. This implies that in the baseline case of no congestion, the 
OCS and CCS solution concepts coincide. In addition, when there is no membership 
fee, the set of CCS environments is clearly the set of spanning super environments of 
the All Paired environment. Hence, the difference between Open Clubwise Stability 
and Closed Clubwise Stability exists only when the membership fee is positive and 
club congestion exists.

In order to demonstrate the difference between OCS and CCS, we define 
the Almost Grand Club environment as an environment in which there 
is exactly one populated club and all individuals except for one are affil-
iated with it. Let ​​n​ a​​  >  3​, and let ​h​( · )​​ be a club congestion function such that  
​​k​ h​​​(​n​ a​​ − 1)​  > ​ k​ h​​​(​n​ a​​)​  > ​ max​k∈​{2, … , ​n​a​​−2}​​​ ​k​ h​​​(k)​​.20 Consider the Almost Grand 

19 The literature on the stability of coalition partitions and jurisdictions also explores various admission rules. 
The basic rule is free mobility wherein each group of individuals can freely move from one coalition to another. 
Well-studied restrictions of free mobility in this context are exclusion due to other affiliations, admission rules, and 
capacity thresholds.

20 One example of a club congestion function that satisfies these properties is the exponential congestion func-
tion with ​a  =  0​ and ​δ  = ​ √ 

_____________
  4 ​n​ a​ 

2​ − 16 ​n​a​​ + 14 ​/​(2​(​n​a​​ − 1)​)​​ .
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Club environment when ​​k​ h​​​(​n​ a​​)​  >  c  > ​ max​k∈​{2, … , ​n​a​​−2}​​​ ​k​ h​​​(k)​​. In this case, no 
individual wants to leave the populated club, since ​​k​ h​​​(​n​ a​​ − 1)​  >  c​. No subset of 
individuals would want to form a new club, since ​c  > ​ max​k∈​{2, … , ​n​a​​−2}​​​ ​k​ h​​​(k)​​.21  
Since ​​k​ h​​​(​n​ a​​)​  >  c​, the isolated individual wishes to join the populated club and 
the Almost Grand Club environment is not OCS. But since ​​k​ h​​​(​n​ a​​ − 1)​  > ​ k​  h​​​(​n​ a​​)​​, 
such a deviation will strictly harm incumbents of the populated club who lose out 
because  the positive externalities (one new direct connection) are lower than the 
negative externalities (weaker direct connections to all other incumbents due to 
stronger club congestion). Hence, the Almost Grand Club environment is CCS. 
Although we do not pursue a dynamic analysis of our setting wherein individuals 
join the environment sequentially, it is intuitive that while OCS encourages integra-
tion (in this example, one big club), CCS may drive the environment toward segre-
gation (uniform partition).

V.  Real Life Implications: Homophily and Clustering

A. Homophily

When the population consists of different types of individuals, homophily 
becomes a major interest in the formation of social networks. In this literature, 
homophily is manifested by individuals establishing links only (or mostly) within 
their own type. In the traditional club theory, the meaning of segregation (homoph-
ily) is that jurisdictions (clubs) are composed of homogeneous individuals.22 The 
driver for homophily in both literatures is heterogeneity of preferences. Individuals 
of different types may have different preferences over local public goods or the ben-
efit from links to individuals of different types.23

Our setup of club formation is rich enough to generate homophily that is based on 
heterogeneous preferences. But it may also give rise to homophily when the types 
have no preferences for discrimination (i.e., the value of a link is independent of the 
type of individuals it connects). To demonstrate this, we consider a simple example in 
which the individuals are identical in their preferences with respect to the benefit from 
links but have different “social skills” that translate into different congestion functions.

Suppose that there are six individuals: four individuals are of type X, and two 
individuals are of type Y. The two types differ only with respect to the congestion 
function. Type X has a constant congestion function ​​h​ x​​​(m)​  =  1 / 3​ for every club 
size, while type Y has a congestion function such that ​​h​ y​​​(2)​  =  1​ and ​​h​ y​​​(m)​  =  0​ 
for larger clubs. Note that the congestion function is defined on the size of club rather 

21 For every size ​k​ of the new club, the benefits for individuals from the populated club are bounded from 
above by ​​k​ h​​​(k)​​ (at least one of them should be a member of the new club). Therefore, ​c  > ​ max​k∈​{2, … , ​n​a​​−2}​​​ ​k​ h​​​(k)​​ 
guarantees no deviations to clubs of size ​​n​ a​​ − 2​ or smaller. The maximal gain for an individual affiliated with the 
populated club from being involved in the formation of a new club of size ​​n​ a​​ − 1​ or ​​n​ a​​​ is bounded by ​h​(​n​ a​​ − 1)​​. 
Since ​​n​ a​​  >  3​, ​c  > ​ k​ h​​​(​n​ a​​ − 2)​  = ​ (​n​ a​​ − 3)​h​(​n​ a​​ − 2)​  ≥  h​(​n​ a​​ − 1)​​. This means that ​c  > ​ max​k∈​{2, … , ​n​a​​−2}​​​ ​k​ h​​​(k)​​ 
guarantees no deviations to form new clubs.

22 See Tiebout (1956) and Wooders (1980, 1989).
23 Homophily may also be an outcome of different costs of association (e.g., Jackson and Rogers 2005).
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than on its composition. Consider an environment with two populated clubs ​A​ and ​B​ 
where the four type-X individuals are members of club ​A​ and the two type-Y indi-
viduals are members of club ​B​. It turns out that this environment is Open Clubwise 
Stable for ​c  ∈ ​ [ 2 / 3, 1]​​. The difference in the congestion functions is important for 
the (no) formation of a new club of size two that includes one type-X individual 
and one type-Y individual. The type-Y individual that does not suffer congestion in 
clubs of size two would have been happy to form such a club due to the new direct 
and indirect links that it implies. However, the type-X individual suffers from con-
gestion that makes it not worthwhile to form a new club while receiving only two 
connections (one direct and one indirect) in return.24

It is interesting to note that homophily due to differences in congestion functions 
is consistent with the evidence described in McPherson and Smith-Lovin (1982). It 
describes a homophilous environment where men (type X) tend to belong to much 
larger clubs than do women (type Y). Gender differences in various aspects of social 
life can be attributed either to the larger number of direct contacts formed by men or 
the higher quality of direct contacts cultivated by women.

B. Clustering

A well-known real-life phenomenon in social networks is that they are charac-
terized by high clustering. That is, in most real-life networks, the probability of 
two individuals who share a common neighbor to be connected is much higher 
than would be expected if connections had been formed randomly (see Goyal 2007 
and Jackson 2008). High clustering affects the spread of information and therefore 
access to jobs, ideas, and other resources.

Social sciences literature (see Rivera, Soderstrom, and  Uzzi 2010 for a 
recent survey) frequently attributes high clustering in social networks to one 
of two explanations. One explanation is based on homophily (see McPherson, 
Smith-Lovin, and Cook 2001). The other explanation assumes individual preference 
for connections with individuals with whom a shared connection already exists. 
Termed “preference for transitivity,” it can be based on various motives, such as 
reduced uncertainty, improved monitoring, conflict mitigation, and minimization 
of opportunism (see Heider 1946, Cartwright and Harary 1956, Coleman 1988, and 
Hummon and Doreian 2003).

A relatively recent body of literature attempts to provide econometric tools for 
estimating network formation models that incorporate homophily, preference for 
transitivity, and state dependence in links.25 A growing concern in this literature 

24 Complete segregation, as in this example, is not a general feature in network formation models with het-
erogeneity, since the gain from one link between two components guarantees connections (mostly indirect) to all 
members of the other component. Therefore, it is usually very beneficial in these models to initiate few links across 
components.

25 One of the main challenges of this literature is the treatment of homophily on unobservables. 
Goldsmith-Pinkham and  Imbens (2013) introduces homophily on unobservables by assuming that the relevant 
unobservables are binary and distributed independently of all observables. In Mele (2018), individuals are par-
titioned exogenously to unobserved communities, and they exhibit preference for transitivity only within these 
communities. Graham (2015, 2016) proposes to exploit the fact that homophily is independent of network structure. 
See the discussion in Jackson (2014).
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is that neglect of self-selection into social contexts leads to overestimation of the 
importance of homophily and preference for transitivity in the process of network 
formation (see Rivera, Soderstrom, and  Uzzi 2010; Currarini, Jackson, and  Pin 
2010; and Miyauchi 2016).

Indeed, we believe that our setting provides a third explanation for the high clus-
tering observed in real-life networks. Since every pair of individuals who shares a 
club is connected in the induced network, the affiliation portfolios chosen by indi-
viduals induce a social network composed of a collection of cliques. Therefore, in 
our framework, a network induced by nontrivial clubs (i.e., of size greater than ​two​) 
must exhibit high local clustering since an individual’s neighbors form a tightly 
knit group (see Jackson, Rodriguez-Barraquer, and Tan 2012). Hence, we propose 
to consider clubs as linking platforms rather than individuals’ linking preferences 
as the fundamental that drives the high clustering observed in real-life networks.26

VI.  Concluding Comments

This paper focuses on the formation of social networks based on the endoge-
nous formation of social clubs, in particular on the role of clubs as platforms for 
link formation. Most of our analysis relies on the assumptions that clubs (besides 
their size) and individuals are homogeneous. A more complete picture of the social 
architecture may include the endogenous formation of a variety of clubs that may 
differ in membership costs; quality of induced links; and rules of entry, exit, and for-
mation. For example, in some clubs, the interaction among members may be more 
intense than in others, and as a result, they may differ in their congestion functions 
and membership fees. We also assume that individuals are homogeneous. As we 
demonstrate by example in Section IIIA, in a model of heterogeneous individuals, 
the weight of each link may depend on the identity of the individuals and may be 
asymmetric. In addition, individuals may exhibit preferences for discrimination and 
attention capacity constraints. These costs and benefits affect the attractiveness of 
the different clubs and their composition. As a result, they also affect the stable 
social environments that may emerge from our endogenous affiliation setting.
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